Molecular and Cellular Biochemistry

, Volume 386, Issue 1–2, pp 153–165 | Cite as

Isoorientin attenuates lipopolysaccharide-induced pro-inflammatory responses through down-regulation of ROS-related MAPK/NF-κB signaling pathway in BV-2 microglia

  • Li Yuan
  • Yuchen Wu
  • Xiaomeng Ren
  • Qian Liu
  • Jing Wang
  • Xuebo LiuEmail author


Isoorientin (ISO) is a flavonoid compound in the human diet, and has been known to possess various bioactivities. However, the effects of ISO on microglia inflammation have not been investigated. The current study investigates the neuroprotective effect of ISO in LPS-activated mouse microglial (BV-2) cells. ISO significantly increased the BV-2 cells viability, blocked the protein expression of inducible nitric oxide synthase and cyclooxygenase-2, and decreased the production of nitric oxide, pro-inflammatory cytokines including tumor necrosis factor-α and interleukin-1β. The activation of mitogen-activated protein kinases (MAPKs) was blocked by ISO, and NF-κB nuclear translocation was decreased by ISO both alone and together with NF-κB inhibitor (PDTC) and MAPKs inhibitors (U0126, SP 600125, and SB 203580). Furthermore, ISO strongly quenched intracellular reactive oxygen species (ROS) generation. ROS inhibitor (N-acetyl cysteine, NAC) significantly inhibited pro-inflammatory cytokines release and NF-κB and MAPKs activation, indicating that ISO attenuated neuroinflammation by inhibiting the ROS-related MAPK/NF-κB signaling pathway.


Isoorientin Neuroinflammatory Microglia MAPK kinases NF-κB ROS 


BV-2 cell

Mouse microglial cell line






Reactive oxygen species


Nitric oxide


Mitogen-activated protein kinases


Nuclear factor κB


Tumor necrosis factor




Inducible nitric oxide synthase





This work was financially supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 31000757), and the National “Twelfth Five-Year” Plan for Science and Technology Support (No. 2012BAH30F03).

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

11010_2013_1854_MOESM1_ESM.ppt (450 kb)
Supplementary material 1 (PPT 450 kb)


  1. 1.
    Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69PubMedCrossRefGoogle Scholar
  2. 2.
    Nakajima K, Kohsaka S (1998) Functional roles of microglia in the central nervous system. Hum Cell 11:141–155PubMedGoogle Scholar
  3. 3.
    Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295PubMedCrossRefGoogle Scholar
  4. 4.
    Amor S, Puentes F, Baker D, Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169PubMedCrossRefGoogle Scholar
  5. 5.
    Long-Smith CM, Sullivan AM, Nolan YM (2009) The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 89:277–287PubMedCrossRefGoogle Scholar
  6. 6.
    Lue LF, Kuo YM, Beach T, Walker DG (2010) Microglia activation and anti-inflammatory regulation in Alzheimer’s disease. Mol Neurobiol 41:115–128PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Cao Q, Li P, Lu J, Dheen ST, Kaur C et al (2010) Nuclear factor-κB/p65 responds to changes in the Notch signaling pathway in murine BV-2 cells and in amoeboid microglia in postnatal rats treated with the gamma-secretase complex blocker DAPT. J Neurosci Res 88:2701–2714PubMedGoogle Scholar
  8. 8.
    Choi Y, Lee MK, Lim SY, Sung SH, Kim YC (2009) Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1β by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. Br J Phamrmacol 156:933–940CrossRefGoogle Scholar
  9. 9.
    Wang MJ, Huang HY, Chen WF, Chang HF, Kuo JS (2010) Glycogen synthase kinase-3β inactivation inhibits tumor necrosis factor-a production in microglia by modulating nuclear factor κB and MLK3/JNK signaling cascades. J Neuroinflammation 7:99–116PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41:242–247PubMedCrossRefGoogle Scholar
  11. 11.
    Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R (2010) Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 7:30PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Murphy S (2000) Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29:1–13PubMedCrossRefGoogle Scholar
  14. 14.
    Liang X, Wu L, Wang Q, Hand T, Bilak M et al (2007) Function of COX-2 and prostaglandins in neurological disease. J Mol Neurosci 33:94–99PubMedCrossRefGoogle Scholar
  15. 15.
    Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271PubMedCrossRefGoogle Scholar
  16. 16.
    Jang SI, Kim HJ, Kim YJ, Jeong SI, You YO (2006) Tanshinone IIA inhibits LPS-induced NF-κB activation in RAW 264.7 cells: possible involvement of the NIK-IKK, ERK1/2, p38 and JNK pathways. Eur J Pharmacol 542:1–7PubMedCrossRefGoogle Scholar
  17. 17.
    Poulose SM, Fisher DR, Larson J, Bielinski DF, Rimando AM, Carey AN et al (2012) Anthocyanin-rich Acai (Euterpe oleracea Mart.) Fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J Agric Food Chem 60:1084–1093PubMedCrossRefGoogle Scholar
  18. 18.
    Zeng KW, Fu H, Liu GX, Wang XM (2010) Icariin attenuates lipopolysaccharide-induced microglial activation and resultant death of neurons by inhibiting TAK1/IKK/NF-κB and JNK/p38 MAPK pathways. Int Immunopharmacol 10:668–678PubMedCrossRefGoogle Scholar
  19. 19.
    Yong-Chun J, Lin Y, Yuan K (2012) A novel high-performance liquid chromatography fingerprint approach to discriminate Phyllostachys pubescens from China. Pharmacogn Mag 8:42–48PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Prinz S, Ring A, Huefner A, Pemp E, Kopp B (2007) 4’’’- Acetylvitexin-2’’ -O-rhamnoside, isoorientin, orientin, and 8-methoxykaempferol-3-O-glucoside as markers for the differentiation of Crataegus monogyna and Crataegus pentagyna from Crataegus laevigata. Chem Biodivers 4:2920–2931PubMedCrossRefGoogle Scholar
  21. 21.
    Tunalier Z, Koşar M, Küpeli E, Çaliş Ì, Başer KHC (2007) Antioxidant, anti-inflammatory, anti-nociceptive activities and composition of Lythrum salicaria L. extracts. J Ethnopharmacol 110:539–547PubMedCrossRefGoogle Scholar
  22. 22.
    Watanabe W (2007) An anthocyanin compound in buckwheat sprouts and its contribution to antioxidant capacity. Biosci Biotechnol Biochem 71:579–582PubMedCrossRefGoogle Scholar
  23. 23.
    Peng J, Fan G, Hong Z, Chai Y, Wu Y (2005) Preparative separation of isovitexin and isoorientin from Patrinia villosa Juss by high-speed counter-current chromatography. J Chromatogr 1074:111–115CrossRefGoogle Scholar
  24. 24.
    Budzianowski J, Budzianowska A, Kromerb K (2002) Naphthalene glucoside and other phenolics from the shoot and callus cultures of Drosophyllum lusitanicum. Phytochemistry 61:421–425PubMedCrossRefGoogle Scholar
  25. 25.
    Küpeli E, Aslan M, Gürbüz I, Yesilada E (2004) Evaluation of in vivo biological activity profile of isoorientin. Z Naturforsch 59:787–790Google Scholar
  26. 26.
    Yuan L, Wang J, Xiao HF, Xiao CX, Wang YT, Liu XB (2012) Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells. Toxicol Appl Pharm 265:83–92CrossRefGoogle Scholar
  27. 27.
    Conforti F, Rigano D, Menichini F, Loizzo MR, Senatore F (2009) Protection against neurodegenerative diseases of Iris pseudopumila extracts and their constituents. Fitoterapia 80:62–67PubMedCrossRefGoogle Scholar
  28. 28.
    Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069PubMedCrossRefGoogle Scholar
  29. 29.
    Ha SK, Moon E, Kim SY (2010) Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci Lett 485:143–147PubMedCrossRefGoogle Scholar
  30. 30.
    Candiracci M, Piatti E, Dominguez-Barragan M, García-Antras D, Morgado B, Ruano D et al (2012) Anti-inflammatory activity of a honey flavonoid extract on lipopolysaccharide-activated N13 microglial cells. J Agric Food Chem 60:12304–12311PubMedCrossRefGoogle Scholar
  31. 31.
    Dai JN, Zong Y, Zhong LM, Li YM, Zhang W, Bian LG, Ai QL et al (2011) Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. Plos One 6:e21891Google Scholar
  32. 32.
    Ock J, Han HS, Hong SH, Lee SY, Han YM, Kwon BM et al (2010) Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. Brit J Pharmacol 159:1646–1662CrossRefGoogle Scholar
  33. 33.
    Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzell S et al (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radical Biol Med 45:18–31CrossRefGoogle Scholar
  34. 34.
    Kim EJ, Kwon KJ, Park JY, Lee SH, Moon CH, Baik EJ (2002) Effects of peroxisome proliferator-activated receptor agonists on LPS-induced neuronal death in mixed cortical neurons: associated with iNOS and COX-2. Brain Res 941:1–10PubMedCrossRefGoogle Scholar
  35. 35.
    Wilms H, Claasen J, Röhl C, Sievers J, Deuschl G, Lucius R (2003) Involvement of benzodiazepine receptors in neuroinflammatory and neurodegenerative diseases: evidence from activated microglial cells in vitro. Neurobiol Dis 14:417–424PubMedCrossRefGoogle Scholar
  36. 36.
    Korhonen R, Lahti A, Kankaanranta H, Moilanen E (2005) Nitric oxide production and signaling in inflammation. Curr Drug Targets 4:471–479CrossRefGoogle Scholar
  37. 37.
    Mihm MJ, Schanbacher BL, Wallace BL, Wallace LJ, Uretsky NJ, Bauer JA (2001) Free 3-nitrotyrosine causes striatal neurodegeneration in vivo. J Neurosci 21:1–5Google Scholar
  38. 38.
    Steinert JR, Chernova T, Forsythe ID (2010) Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 16:435–452PubMedCrossRefGoogle Scholar
  39. 39.
    Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscl Throm Vasc 31:986–1000CrossRefGoogle Scholar
  40. 40.
    Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease-A brief review of the basic science and clinical literature. Cold Spring Harbor Perspect Med 2:a006346Google Scholar
  41. 41.
    Andreasson KI, Savonenko A, Vidensky S, Goellner JJ, Zhang Y, Shaffer A, Kaufmann WE, Worley PF, Isakson P, Markowska AL (2001) Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J Neurosci 21:8198–8209PubMedGoogle Scholar
  42. 42.
    Nam KN, Park YM, Jung HJ, Lee JY, Min BD et al (2010) Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 648:110–116PubMedCrossRefGoogle Scholar
  43. 43.
    Szczepanik AM, Ringheim GE (2003) IL-10 and glucocorticoids inhibit Abeta (1-42)- and lipopolysaccharide-induced pro-inflammatory cytokine and chemokine induction in the central nervous system. J Alzheimers Dis 5:105–117PubMedGoogle Scholar
  44. 44.
    Lee Y, Schulte DJ, Shimada K, Chen S, Crother TR, Chiba N et al (2012) Interleukin-1β is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease. Circulation 125:1542–1550PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Thornberry N, Bull H, Calaycay J, Chapman K, Howard A, Kostura M, Miller D, Molineaux S, Weidner J, Aunins J (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774PubMedCrossRefGoogle Scholar
  46. 46.
    Goldbach-Mansky R (2011) Immunology in clinic review series; focus on autoinflammatory diseases: update on monogenic autoinflammatory diseases: the role of interleukin (IL)-1 and an emerging role for cytokines beyond IL-1. Clin Exp Immunol 167:391–404Google Scholar
  47. 47.
    Fang IM, Yang CH, Yang CM, Chen MS (2007) Linoleic acid-induced expression of inducible nitric oxide synthase and cyclooxygenase II via p42/44 mitogen-activated protein kinase and nuclear factor-kB pathway in retinal pigment epithelial cells. Exp Eye Res 85:667–677PubMedCrossRefGoogle Scholar
  48. 48.
    Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754:253–262PubMedCrossRefGoogle Scholar
  49. 49.
    Pangestuti R, Bak SS, Kim SK (2011) Attenuation of pro-inflammatory mediators in LPS-stimulated BV2 microglia by chitooligosaccharides via the MAPK signaling pathway. Int J Biol Macromol 49:599–606PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Li Yuan
    • 1
  • Yuchen Wu
    • 1
  • Xiaomeng Ren
    • 1
  • Qian Liu
    • 1
  • Jing Wang
    • 1
  • Xuebo Liu
    • 1
    Email author
  1. 1.Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina

Personalised recommendations