Skip to main content
Log in

Novel quercetin derivatives in treatment of peroxynitrite-oxidized SERCA1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sarco/endoplasmic reticulum calcium ATP-ase (SERCA) is regulated by low concentrations of peroxynitrite and inhibited by high levels, as indicated in human diseases. We studied quercetin (Q) and its novel derivatives monochloropivaloylquercetin (MPQ) and chloronaphthoquinonequercetin (CHQ) as agents with expected preventive properties against peroxynitrite-induced SERCA impairment. Q and MPQ protected the SERCA1 against peroxynitrite induced activity decrease, while CHQ potentiated the inhibitory effect of peroxynitrite. Quercetin derivatives were found to be weaker antioxidants compared with Q, as indicated by their ability to scavenge peroxynitrite and prevent of SERCA1 carbonylation, both decreasing in the order (Q > MPQ > CHQ). Quantum-chemical values of theoretical parameter E HOMO also indicated lower antioxidant capacities for MPQ and CHQ. Prooxidant properties estimated by calculations of frontier molecular orbitals (E LUMO) correlated with experimentally determined SH-group decrease induced by the compounds studied. Both methods showed a decrease of prooxidant properties as follows: CHQ > MPQ > Q. In addition, experimentally measured half-wave potentials indicated stronger prooxidant properties of quercetin derivatives as compared to Q. More expressive alterations of conformation in the transmembrane region of SERCA1 induced by quercetin derivatives, as compared with Q, may at least partially correlate with their higher lipophilicities. The protective effects of Q and MPQ on different isoforms of SERCA activity may be useful in prevention and treatment of inflammation or muscle diseases. The inhibitory effect of CHQ on SERCA isoforms may be beneficial in therapeutic approaches aimed at anti-tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ca2+-ATPase of SR:

SERCA

CV:

Cyclic voltammetry

Cys-SO3H:

Cysteine sulfonic acid

DMSO:

Dimethylsulfoxide

DNPH:

2,4-dinitrophenylhydrazine

DTNB:

5,5′-dithio-bis(2-nitrobenzoic acid)

EDTA:

Ethylenediaminetetraacetic acid

FITC:

Fluorescein-5-isothiocyanate

CHQ:

Chloronaphthoquinonequercetin

MPQ:

Monochloropivaloylquercetin

NADH:

Nicotinamide adenine dinucleotide

NCD-4:

N-cyclohexyl-N′-(4-dimethylamino-l-naphthyl) carbodiimide

PBS:

Phosphate buffered saline

PIGE:

Paraffine impregnated graphite electrode

PVDF:

Polyvinylidene fluoride

Q :

Quercetin

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

SERCA1:

SERCA from fast-twitch skeletal muscle, isoform 1

SR:

Sarcoplasmic reticulum

ThioGlo1:

10-(2,5-dihydro-2,5-dioxo-1 h-pyrrol-1-yl)-9-methoxy-3-oxo-, methyl ester

TEA:

Triethylenamine

References

  1. Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513–523

    Article  PubMed  Google Scholar 

  2. Prior RL, Cao G (2000) Antioxidant phytochemicals in fruits and vegetables: diet and health implications. HortScience 35:588–592

    CAS  Google Scholar 

  3. Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355

    Google Scholar 

  4. Croft KD (1998) The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci 854:435–442

    Article  CAS  PubMed  Google Scholar 

  5. Pollard SE, Kuhnle GG, Vauzour D et al (2006) The reaction of flavonoid metabolites with peroxynitrite. Biochem Biophys Res Commun 350:960–968

    Article  CAS  PubMed  Google Scholar 

  6. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  7. Yen GC, Duh PD, Tsai HL, Huang SL (2003) Pro-oxidative properties of flavonoids in human lymphocytes. Biosci Biotech Bioch 67:1215–1222

    Article  CAS  Google Scholar 

  8. Rohdewald P (2002) A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int J Clin Pharmacol Ther 40:158–168

    Article  CAS  PubMed  Google Scholar 

  9. Hanasaki Y, Ogawa S, Fukui S (1994) The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 16:845–850

    Article  CAS  PubMed  Google Scholar 

  10. Ursini F, Maiorino M, Morazzoni P et al (1994) A novel antioxidant flavonoid (IdB 1031) affecting molecular mechanisms of cellular activation. Free Radic Biol Med 16:547–553

    Article  CAS  PubMed  Google Scholar 

  11. Nijveldt RJ, Van Nood E, Van Hoorn DE et al (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    CAS  PubMed  Google Scholar 

  12. Shoskes DA (1998) Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents. Transplantation 66:147–152

    Article  CAS  PubMed  Google Scholar 

  13. Chang W, Lee Y, Lu F, Chiang H (1993) Inhibitory effects of flavonoids on xanthine oxidase. Anticancer Res 13:2165–2170

    CAS  PubMed  Google Scholar 

  14. Brown JE, Khodr H, Hider RC, Rice-Evans CA (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem J 330:1173–1178

    CAS  PubMed  Google Scholar 

  15. Korkina LG, Afanas’ev IB (1997) Antioxidant and chelating properties of flavonoids. Adv Pharmacol 38:151–163

    Article  CAS  PubMed  Google Scholar 

  16. Horáková L’ (2011) Flavonoids in prevention of diseases with respect to modulation of Ca-pump function. Interdiscip Toxicol 4:114–124

    PubMed Central  PubMed  Google Scholar 

  17. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680

    Article  PubMed  Google Scholar 

  19. Hovnanian A (2007) SERCA pumps and human diseases. Subcell Biochem 45:337–363

    Article  CAS  PubMed  Google Scholar 

  20. 20. Aronson D, Krum H (2012) Novel therapies in acute and chronic heart failure. Pharmacol Ther 135:1–17

    Article  CAS  PubMed  Google Scholar 

  21. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    Article  CAS  PubMed  Google Scholar 

  22. Inesi G, Sumbilla C, Kirtley ME (1990) Relationships of molecular structure and function in Ca2(+)-transport ATPase. Physiol Rev 70:749–760

    CAS  PubMed  Google Scholar 

  23. Lytton J, Westlin M, Burk SE et al (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267:14483–14489

    CAS  PubMed  Google Scholar 

  24. MacLennan DH, Toyofuku T, Lytton J (1992) Structure-function relationships in sarcoplasmic or endoplasmic reticulum type Ca2+ pumps. Ann N Y Acad Sci 671:1–10

    Article  CAS  PubMed  Google Scholar 

  25. Ji Y, Loukianov E, Loukianova T et al (1999) SERCA1a can functionally substitute for SERCA2a in the heart. Am J Physiol 276:89–97

    Google Scholar 

  26. Loukianov E, Ji Y, Grupp IL et al (1998) Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. Circ Res 83:889–897

    Article  CAS  PubMed  Google Scholar 

  27. Ogunbayo OA, Harris RM, Waring RH et al (2008) Inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase by flavonoids: a quantitative structure-activity relationship study. IUBMB Life 60:853–858

    Article  CAS  PubMed  Google Scholar 

  28. Warren GB, Toon PA, Birdsall NJ et al (1974) Reconstitution of a calcium pump using defined membrane components. Proc Natl Acad Sci USA 71:622–626

    Article  CAS  PubMed  Google Scholar 

  29. Karlovská J, Uhríková D, Kučerka N et al (2006) Influence of N-dodecyl-N,N-dimethylamine N-oxide on the activity of sarcoplasmic reticulum Ca(2+)-transporting ATPase reconstituted into diacylphosphatidylcholine vesicles: efects of bilayer physical parameters. Biophys Chem 119:69–77

    Article  PubMed  Google Scholar 

  30. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    CAS  PubMed  Google Scholar 

  31. Veverka M, Gallovič J, Švajdlenka E et al (2013) Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition. Chem Pap 67:76–83

    Article  CAS  Google Scholar 

  32. Robaszkiewicz A, Bartosz G (2009) Estimation of antioxidant capacity against pathophysiologically relevant oxidants using Pyrogallol Red. Biochem Biophys Res Commun 390:659–661

    Article  CAS  PubMed  Google Scholar 

  33. Sharov VS, Dremina ES, Galeva NA et al (2006) Quantitative mapping of oxidation-sensitive cysteine residues in SERCA in vivo and in vitro by HPLC-electrospray-tandem MS: selective protein oxidation during biological aging. Biochem J 394:605–615

    Article  CAS  PubMed  Google Scholar 

  34. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  35. Froud RJ, Lee AG (1986) Conformational transitions in the Ca2+ + Mg2+-activated ATPase and the binding of Ca2+ ions. Biochem J 237:197–206

    CAS  PubMed  Google Scholar 

  36. Restall CJ, Coke M, Phillips E, Chapman D (1986) Derivative spectroscopy of tryptophan fluorescence used to study conformational transitions in the (Ca2+ + Mg2+)-adenosine triphosphatase of sarcoplasmic reticulum. Biochim Biophys Acta 874:305–311

    Article  CAS  PubMed  Google Scholar 

  37. Carney J, East JM, Lee AG (2007) Penetration of lipid chains into transmembrane surfaces of membrane proteins: studies with MscL. Biophys J 92:3556–3563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Strosova M, Karlovska J, Spickett CM et al (2009) Oxidative injury induced by hypochlorous acid to Ca-ATPase from sarcoplasmic reticulum of skletal muscle and protective effect of trolox. Gen Physiol Biophys 28:195–209

    Article  CAS  PubMed  Google Scholar 

  39. Munkonge F, East JM, Lee AG (1989) Positions of the sites labeled by N-cyclohexyl-N′-(4-dimethylamino-1-naphthyl)carbodiimide on the (Ca2++ Mg2+)-ATPase. Biochim Biophys Acta 979:113–120

    Article  CAS  PubMed  Google Scholar 

  40. Velasco-Guillén I, Corbalán-García S, Gómez-Fernández JC, Teruel JA (1998) Location of N-cyclohexyl-N′-(4-dimethyl-amino-alpha-naphthyl)carbodiimide-binding site in sarcoplasmic reticulum Ca2+-transporting ATPase. Eur J Biochem 253:339–344

    Article  PubMed  Google Scholar 

  41. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  42. Faúndez M, Rojas M, Bohle P et al (2011) Pyrogallol red oxidation induced by superoxide radicals: application to evaluate redox cycling of nitro compounds. Anal Biochem 419:2–9

    Google Scholar 

  43. Heijnen CG, Haenen GR, Vekemans J, Bast A (2001) Peroxynitrite scavenging of flavonoids: structure activity relationship. Environ Toxicol Pharmacol 10:199–206

    Article  CAS  PubMed  Google Scholar 

  44. Shoshan V, MacLennan D (1981) Quercetin interaction with the (Ca2++ Mg2+)-ATPase of sarcoplasmic reticulum. J Biol Chem 256:887–892

    CAS  PubMed  Google Scholar 

  45. Calgarotto AK, Miotto S, Honório KM et al (2007) A multivariate study on flavonoid compounds scavenging the peroxynitrite free radical. J Mol Struc-Theochem 808:25–33

    Article  CAS  Google Scholar 

  46. Metodiewa D, Jaiswal AK, Cenas N et al (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 26:107–116

    Article  CAS  PubMed  Google Scholar 

  47. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  PubMed  Google Scholar 

  48. Valente C, Moreira R, Guedes RC et al (2007) The 1,4-naphthoquinone scaffold in the design of cysteine protease inhibitors. Bioorg Med Chem 15:5340–5350

    Article  CAS  PubMed  Google Scholar 

  49. Mulkidjanian AY (2005) Ubiquinol oxidation in the cytochrome bc1 complex: reaction mechanism and prevention of short-circuiting. Biochim Biophys Acta 1709:5–34

    Article  CAS  PubMed  Google Scholar 

  50. Laughton MJ, Halliwell B, Evans PJ, Hoult JR (1989) Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem Pharmacol 38:2859–2865

    Article  CAS  PubMed  Google Scholar 

  51. Awad HM, Boersma MG, Boeren S et al (2001) Structure-activity study on the quinone/quinone methide chemistry of flavonoids. Chem Res Toxicol 14:398–408

    Article  CAS  PubMed  Google Scholar 

  52. Boersma MG, Vervoort J, Szymusiak H et al (2000) Regioselectivity and reversibility of the glutathione conjugation of quercetin quinone methide. Chem Res Toxicol 13:185–191

    Article  CAS  PubMed  Google Scholar 

  53. Gebicka L, Stawowska K (2012) Spectrophotometric studies of the reaction of quercetin with peroxynitrite at different pH. Cent Eur J Chem 10:187–193

    Article  CAS  Google Scholar 

  54. Mora-Pale M, Joon-Kwon S, Linhardt RJ, Dordick JS (2011) Trimer hydroxylated quinone derived from apocynin targets cysteine residues of p47(phox) preventing the activation of human vascular NADPH oxidase. Free Radic Biol Med 52:962–969

    Article  PubMed Central  PubMed  Google Scholar 

  55. Eaton P (2006) Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic Biol Med 40:1889–1899

    Article  CAS  PubMed  Google Scholar 

  56. McCracken PG, Bolton JL, Thatcher GRJ (1997) Covalent modification of proteins and peptides by the quinone methide from 2- tert-Butyl-4,6-dimethylphenol: selectivity and reactivity with respect to competitive hydration. J Org Chem 62:1820–1825

    Article  CAS  Google Scholar 

  57. Autry JM, Rubin JE, Svensson B et al (2012) Nucleotide activation of the Ca-ATPase. J Biol Chem 287:39070–39082

    Article  CAS  PubMed  Google Scholar 

  58. Vinokurov M, Ivkova M, Pechatnikov V (1998) Conformational changes at the ATP-catalytic site of the reconstituted sarcoplasmic reticulum Ca-ATPase under the action of pH, Ca2+, and lanthanides. Biofizika 43:496–502

    CAS  PubMed  Google Scholar 

  59. Sumbilla C, Cantilina T, Collins JH et al (1991) Structural perturbation of the transmembrane region interferes with calcium binding by the Ca2+ transport ATPase. J Biol Chem 266:12682–12689

    CAS  PubMed  Google Scholar 

  60. Riley ML, Harding JJ (1995) The reaction of methylglyoxal with human and bovine lens proteins. Biochim Biophys Acta 1270:36–43

    Article  PubMed  Google Scholar 

  61. Suzuki H, Kanazawa T (1995) The tryptophan fluorescence change upon conformational transition of the phosphoenzyme intermediate in sarcoplasmic reticulum Ca-ATPase is revealed in the absence of K and the presence of lasalocid. J Biol Chem 270:3089–3093

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic for the Structural Funds of EU, OP R&D of ERDF in the frame of the Project, Evaluation of natural substances and their selection for prevention and treatment of lifestyle diseases (ITMS 26240220040), by VEGA Grants 2/0038/11, 1/0051/13, and COST ACTION CM1001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L’ubica Horáková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žižková, P., Blaškovič, D., Májeková, M. et al. Novel quercetin derivatives in treatment of peroxynitrite-oxidized SERCA1. Mol Cell Biochem 386, 1–14 (2014). https://doi.org/10.1007/s11010-013-1839-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1839-8

Keywords

Navigation