Molecular and Cellular Biochemistry

, Volume 385, Issue 1–2, pp 207–213 | Cite as

miR-25 promotes gastric cancer cells growth and motility by targeting RECK

  • Hongying ZhaoEmail author
  • Yu Wang
  • Liu Yang
  • Rongke Jiang
  • Wenqing Li


Gastric cancer (GC) is the second leading cause of cancer-related death worldwide. Recently, accumulating evidence suggests that microRNAs (miRNAs) play prominent roles in tumorigenesis and metastasis. Here, we confirmed that miR-25 was significantly increased in human GC tissues and cell lines. Forced expression of miR-25 remarkably enhanced cell proliferation, migration, and invasion in GC cells, whereas inhibition of miR-25 by inhibitor caused significant suppression of proliferation and significant increase of apoptosis. Moreover, inhibition of miR-25 significantly decreased migration and invasion of GC cells. Finally, reversion-inducing-cysteine-rich protein with kazal motifs (RECK) was found to be a target of miR-25. Overexpression of RECK could significantly reverse the oncogenic effect of miR-25. Taken together, miR-25 might promote GC cells growth and motility partially by targeting RECK.


miR-25 RECK Gastric cancer Proliferation Migration Invasion 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi: 10.3322/caac.20107 CrossRefPubMedGoogle Scholar
  2. 2.
    Otani K, Li X, Arakawa T, Chan FK, Yu J (2013) Epigenetic-mediated tumor suppressor genes as diagnostic or prognostic biomarkers in gastric cancer. Expert Rev Mol Diagn 13(5):445–455. doi: 10.1586/erm.13.32 CrossRefPubMedGoogle Scholar
  3. 3.
    Wang X, Wang ZH, Wu YY, Tang H, Tan L, Gao XY, Xiong YS, Liu D, Wang JZ, Zhu LQ (2013) Melatonin attenuates scopolamine-induced memory/synaptic disorder by rescuing EPACs/miR-124/Egr1 pathway. Mol Neurobiol 47(1):373–381. doi: 10.1007/s12035-012-8355-9 CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang N, Wang X, Huo Q, Sun M, Cai C, Liu Z, Hu G, Yang Q (2013) MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin. Oncogene. doi: 10.1038/onc.2013.286 Google Scholar
  5. 5.
    Liao WT, Li TT, Wang ZG, Wang SY, He MR, Ye YP, Qi L, Cui YM, Wu P, Jiao HL, Zhang C, Xie YJ, Wang JX, Ding Y (2013) MicroRNA-224 promotes cell proliferation and tumor growth in human colorectal cancer by repressing PHLPP1 and PHLPP2. Clin Cancer Res 19(17):4662–4672. doi: 10.1158/1078-0432.CCR-13-0244 CrossRefPubMedGoogle Scholar
  6. 6.
    Yang TS, Yang XH, Wang XD, Wang YL, Zhou B, Song ZS (2013) MiR-214 regulate gastric cancer cell proliferation, migration and invasion by targeting PTEN. Cancer Cell Int 13(1):68. doi: 10.1186/1475-2867-13-68 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Zhang N, Wei X, Xu L (2013) miR-150 promotes the proliferation of lung cancer cells by targeting P53. FEBS Lett 587(15):2346–2351. doi: 10.1016/j.febslet.2013.05.059 CrossRefPubMedGoogle Scholar
  8. 8.
    Yao Y, Suo AL, Li ZF, Liu LY, Tian T, Ni L, Zhang WG, Nan KJ, Song TS, Huang C (2009) MicroRNA profiling of human gastric cancer. Mol Med Rep 2(6):963–970. doi: 10.3892/mmr_00000199 PubMedGoogle Scholar
  9. 9.
    Fallah P, Arefian E, Naderi M, Aghaee-Bakhtiari SH, Atashi A, Ahmadi K, Shafiee A, Soleimani M (2013) miR-146a and miR-150 promote the differentiation of CD133 cells into T-lymphoid lineage. Mol Biol Rep 40(8):4713–4719. doi: 10.1007/s11033-013-2567-6 CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang JF, Fu WM, He ML, Wang H, Wang WM, Yu SC, Bian XW, Zhou J, Lin MC, Lu G, Poon WS, Kung HF (2011) MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell 22(21):3955–3961. doi: 10.1091/mbc.E11-04-0356 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Katoh M (2013) Therapeutics targeting angiogenesis: Genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med 32(4):763–767. doi: 10.3892/ijmm.2013.1444 PubMedCentralPubMedGoogle Scholar
  12. 12.
    Xu X, Chen Z, Zhao X, Wang J, Ding D, Wang Z, Tan F, Tan X, Zhou F, Sun J, Sun N, Gao Y, Shao K, Li N, Qiu B, He J (2012) MicroRNA-25 promotes cell migration and invasion in esophageal squamous cell carcinoma. Biochem Biophys Res Commun 421(4):640–645. doi: 10.1016/j.bbrc.2012.03.048 S0006-291X(12)00495-0 [pii]CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z (2012) MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep 27(2):594–598. doi: 10.3892/or2011.1530 PubMedGoogle Scholar
  14. 14.
    Razumilava N, Bronk SF, Smoot RL, Fingas CD, Werneburg NW, Roberts LR, Mott JL (2012) miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology 55(2):465–475. doi: 10.1002/hep.24698 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Kim BH, Hong SW, Kim A, Choi SH, Yoon SO (2013) Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J Surg Oncol 107(5):505–510. doi: 10.1002/jso.23271 CrossRefPubMedGoogle Scholar
  16. 16.
    Li X, Zhang Y, Zhang H, Liu X, Gong T, Li M, Sun L, Ji G, Shi Y, Han Z, Han S, Nie Y, Chen X, Zhao Q, Ding J, Wu K, Daiming F (2011) miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res 9(7):824–833. doi: 10.1158/1541-7786.MCR-10-0529 CrossRefGoogle Scholar
  17. 17.
    Li N, Tang B, Zhu ED, Li BS, Zhuang Y, Yu S, Lu DS, Zou QM, Xiao B, Mao XH (2012) Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett 586(6):722–728. doi: 10.1016/j.febslet.2012.01.025 CrossRefPubMedGoogle Scholar
  18. 18.
    Clark JC, Thomas DM, Choong PF, Dass CR (2007) RECK—a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer. Cancer Metastasis Rev 26(3–4):675–683. doi: 10.1007/s10555-007-9093-8 CrossRefPubMedGoogle Scholar
  19. 19.
    Takeuchi T, Hisanaga M, Nagao M, Ikeda N, Fujii H, Koyama F, Mukogawa T, Matsumoto H, Kondo S, Takahashi C, Noda M, Nakajima Y (2004) The membrane-anchored matrix metalloproteinase (MMP) regulator RECK in combination with MMP-9 serves as an informative prognostic indicator for colorectal cancer. Clin Cancer Res 10(16):5572–5579. doi: 10.1158/1078-0432.CCR-03-0656 CrossRefPubMedGoogle Scholar
  20. 20.
    Chiang CH, Hou MF (1830) Hung WC (2013) Up-regulation of miR-182 by beta-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK. Biochim Biophys Acta 4:3067–3076. doi: 10.1016/j.bbagen.2013.01.009 Google Scholar
  21. 21.
    Zhang C, Ling Y, Xu Y, Gao L, Li R, Zhu J, Fan L, Wei L (2012) The silencing of RECK gene is associated with promoter hypermethylation and poor survival in hepatocellular carcinoma. Int J Biol Sci 8(4):451–458. doi: 10.7150/ijbs.4038 PubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lin HY, Chiang CH, Hung WC (2013) STAT3 upregulates miR-92a to inhibit RECK expression and to promote invasiveness of lung cancer cells. Br J Cancer. doi: 10.1038/bjc.2013.349 Google Scholar
  23. 23.
    Li L, Bachem MG, Zhou S, Sun Z, Chen J, Siech M, Bimmler D, Graf R (2009) Pancreatitis-associated protein inhibits human pancreatic stellate cell MMP-1 and -2, TIMP-1 and -2 secretion and RECK expression. Pancreatology 9(1–2):99–110. doi: 10.1159/000178880 CrossRefPubMedGoogle Scholar
  24. 24.
    Hirata H, Ueno K, Shahryari V, Tanaka Y, Tabatabai ZL, Hinoda Y, Dahiya R (2012) Oncogenic miRNA-182-5p targets Smad4 and RECK in human bladder cancer. PLoS ONE 7(11):e51056. doi: 10.1371/journal.pone.0051056 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Zhou L, Yang ZX, Song WJ, Li QJ, Yang F, Wang DS, Zhang N, Dou KF (2013) MicroRNA-21 regulates the migration and invasion of a stem-like population in hepatocellular carcinoma. Int J Oncol 43(2):661–669. doi: 10.3892/ijo.2013.1965 PubMedGoogle Scholar
  26. 26.
    Jung HM, Phillips BL, Patel RS, Cohen DM, Jakymiw A, Kong WW, Cheng JQ, Chan EK (2012) Keratinization-associated miR-7 and miR-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECK) in oral cancer. J Biol Chem 287(35):29261–29272. doi: 10.1074/jbc.M112.366518 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Reis ST, Pontes-Junior J, Antunes AA, Dall’Oglio MF, Dip N, Passerotti CC, Rossini GA, Morais DR, Nesrallah AJ, Piantino C, Srougi M, Leite KR (2012) miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol 12:14. doi: 10.1186/1471-2490-12-14 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hongying Zhao
    • 1
    Email author
  • Yu Wang
    • 1
  • Liu Yang
    • 1
  • Rongke Jiang
    • 1
  • Wenqing Li
    • 1
  1. 1.Department of Oncology, 5th Affiliated Hospital of Qiqihar Medical CollegeDaqing LongNan HospitalDaqingChina

Personalised recommendations