Skip to main content
Log in

Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Epidemiological studies have demonstrated that diabetes mellitus is a serious health burden for both governments and healthcare providers. This study was hypothesized to evaluate the antihyperglycemic potential of eugenol by determine the activities of key enzymes of glucose metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into male albino Wistar rats by intraperitoneal administration of STZ (40 mg/kg body weight (b.w.)). Eugenol was administered to diabetic rats intragastrically at 2.5, 5, and 10 mg/kg b.w. for 30 days. The dose 10 mg/kg b.w. significantly reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) and increased plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and liver marker enzymes (AST, ALT, and ALP), creatine kinase and blood urea nitrogen in serum and blood of diabetic rats were significantly reverted to near normal levels by the administration of eugenol. Further, eugenol administration to diabetic rats improved body weight and hepatic glycogen content demonstrated the antihyperglycemic potential of eugenol in diabetic rats. The present findings suggest that eugenol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes, and it is sensible to broaden the scale of use of eugenol in a trial to alleviate the adverse effects of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Veerapur VP, Prabhakar KR, Thippeswamy BS, Bansal P, Srinivasan KK, Unnikrishnan MK (2012) Antidiabetic effect of Ficus racemosa Linn. stem bark in high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats: a mechanistic study. Food Chem 132:186–193

    Article  CAS  PubMed  Google Scholar 

  2. Parka H, Junga UJ, Choa S, Jungc HK, Shimd S, Choi M (2013) Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose- and lipid-regulating enzymes in db/db mice. J Nutr Biochem 24:419–427

    Article  Google Scholar 

  3. Palanisamy U, Manaharan T, Teng LL, Radhakrishnan AKC, Subramaniam T, Masilamani T (2011) Rambutan rind in the management of hyperglycemia. Food Res Int 44:2278–2282

    Article  CAS  Google Scholar 

  4. Hwang CK, Han PV, Zabetian A, Ali MK, Narayan KM (2012) Rural diabetes prevalence quintuples over twenty-five years in low- and middle-income countries: a systematic review and meta-analysis. Diabetes Res Clin Pract 96:271–285

    Article  PubMed  Google Scholar 

  5. Misra P, Upadhyay RP, Misra P, Anand K (2011) A review of the epidemiology of diabetes in rural India. Diabetes Res Clin Pract 92:303–311

    Article  CAS  PubMed  Google Scholar 

  6. Sundaram R, Naresh R, Shanthi P, Sachdanandam P (2012) Efficacy of 20-OH-ecdysone on hepatic key enzymes of carbohydrate metabolismin streptozotocin induced diabetic rats. Phytomedicine 19:725–729

    Article  CAS  PubMed  Google Scholar 

  7. Srinivasan S, Pari L (2013) Antihyperlipidemic effect of diosmin: a citrus flavonoid on lipid metabolism in experimental diabetic rats. J Funct Foods 5:484–492

    Article  CAS  Google Scholar 

  8. Karthikesan K, Pari L, Menon VP (2010) Protective effect of tetrahydrocurcumin and chlorogenic acid against streptozotocin–nicotinamide generated oxidative stress induced diabetes. J Funct Foods 2:134–142

    Article  CAS  Google Scholar 

  9. Jirovetz L, Buchbauer G, Stoilova I, Stoyanova A, Krastanov A, Schmidt E (2006) Chemical composition and antioxidant properties of clove leaf essential oil. J Agric Food Chem 54:6303–6307

    Article  CAS  PubMed  Google Scholar 

  10. Kabuto H, Tada M, Kohno M (2007) Eugenol [2-methoxy-4-(2-propenyl)] phenol prevents 6-hydroxydopamine-induced dopamine depression and lipid peroxidation inductivity in mouse striatum. Biol Pharm Bull 30:423–427

    Article  CAS  PubMed  Google Scholar 

  11. Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829

    Article  CAS  PubMed  Google Scholar 

  12. Nuchuchua O, Saesoo S, Sramala I, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res Int 42:1178–1185

    Article  CAS  Google Scholar 

  13. Prabakaran D, Ashokkumar N (2012) Antihyperglycemic effect of esculetin modulated carbohydrate metabolic enzymes activities in streptozotocin induced diabetic rats. J Funct Foods 4:776–783

    Article  CAS  Google Scholar 

  14. Zhang M, Lv XY, Li J, Xu ZG, Chen L (2008) The characterization of high fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res 70:40–45

    Google Scholar 

  15. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–27

    Article  CAS  Google Scholar 

  16. Bisse E, Abragam EC (1999) New less temperature sensitive, microchromato graphic method for the separation and quantitation of glycosylated haemoglobin using a non cyanide buffer system. J Chromatogr 344:81–91

    Article  Google Scholar 

  17. Brandstrup N, Kirk JE, Bruni C (1957) The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages. J Gerontol 12:166–171

    Article  CAS  PubMed  Google Scholar 

  18. Pogson CI, Denton RM (1967) Effect of alloxan diabetes, starvation and refeeding on glycolytic kinase activities in rat epididymal adipose tissue. Nature 216:156–157

    Article  CAS  PubMed  Google Scholar 

  19. Ells HA, Kirkman HN (1961) A colorimetric method for assay of erythrocytic glucose-6-phosphate dehydrogenase. Proc Soc Exp Biol Med 106:607–609

    Article  CAS  PubMed  Google Scholar 

  20. Koide H, Oda T (1959) Pathological occurrence of glucose-6-phosphatase in serum in liver diseases. Clin Chim Acta 4:554–561

    Article  CAS  PubMed  Google Scholar 

  21. Gancedo JM, Gancedo C (1971) Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch Microbiol 76:132–138

    CAS  Google Scholar 

  22. Ong KC, Khoo HE (2000) Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci 67:1695–1705

    Article  CAS  PubMed  Google Scholar 

  23. Szasz G, Gerhardt W, Gruber W (1977) Creatine kinase in serum: further study of adenylate kinase inhibitors. Clin Chem 23:1888–1892

    CAS  PubMed  Google Scholar 

  24. Demirkan A, Melli M (2007) A simple and inexpensive device for collecting urine samples from rats. Lab Anim 36:39–41

    Article  Google Scholar 

  25. Benedicts SR (1911) The detection and estimation of glucose in urine. Ann Med Assoc 57:1193–1196

    Article  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  27. Duncan BD (1957) Multiple ranges tests for correlated and heteroscedastic means. Biometrics 13:359–364

    Article  Google Scholar 

  28. Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226

    Article  CAS  PubMed  Google Scholar 

  29. Latha RC, Daisy P (2011) Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats. Chem Biol Interact 189:112–118

    Article  CAS  PubMed  Google Scholar 

  30. Saravanan G, Ponmurugan P, Senthilkumar GP, Rajarajan T (2009) Modulatory effect of S-allylcysteine on glucose metabolism in streptozotocin induced diabetic rats. J Funct Foods 1:336–340

    Article  CAS  Google Scholar 

  31. Pari L, Srinivasan S (2010) Antihyperglycemic effect of diosmin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Biomed Pharmacother 64:477–481

    Article  CAS  PubMed  Google Scholar 

  32. Saudek CD, Derr RL, Kalyani RR (2006) Assessing glycemia in diabetes using self-monitoring blood glucose and hemoglobin A1c. JAMA 295:1688–1697

    Article  CAS  Google Scholar 

  33. Silva DD, Zancan P, Coelho WS, Gomez LS, Sola-Penna M (2010) Metformin reverses hexokinase and 6-phosphofructo-1-kinase inhibition in skeletal muscle, liver and adipose tissues from streptozotocin-induced diabetic mouse. Arch Biochem Biophys 496:53–60

    Article  PubMed  Google Scholar 

  34. Gardiner NJ, Wang Z, Luke C, Gott A, Price SA, Fernyhoug P (2007) Expression of hexokinase isoforms in the dorsal root ganglion of the adult rat and effect of experimental diabetes. Brain Res 1175:143–154

    Article  CAS  PubMed  Google Scholar 

  35. Kanchana G, Jerine Shyni W, Rajadurai M, Periasamy R (2011) Evaluation of antihyperglycemic effect of sinapic Acid in normal and streptozotocin-induced diabetes in albino rats. Global J Pharmacol 5:33–39

    Google Scholar 

  36. Anand P, Murali KY, Tandon V, Murthy PS, Chandra R (2010) Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem Biol Interact 186:72–81

    Article  CAS  PubMed  Google Scholar 

  37. Celik S, Erdogan S, Tuzcu M (2009) Caffeic acid phenethyl ester (CAPE) exhibits significant potential as an antidiabetic and liver-protective agent in streptozotocin-induced diabetic rats. Pharmacol Res 60:270–276

    Article  CAS  PubMed  Google Scholar 

  38. Xu Y, Osborne BW, Stanton RC (2005) Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am J Physiol Renal Physiol 289:1040–1047

    Article  Google Scholar 

  39. Ugochukwu NH, Babady NE (2003) Antihyperglycemic effect of aqueous and ethanolic extracts of Gongronema latifolium leaves on glucose and glycogen metabolism in livers of normal and streptozotocin-induced diabetic rats. Life Sci 73:1925–1938

    Article  CAS  PubMed  Google Scholar 

  40. He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain MA, Radovick S, Wondisford FE (2009) Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137:635–646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Nordlie RC, Foster JD (2010) A retrospective review of the roles of multifunctional glucose-6-phosphatase in blood glucose homeostasis: genesis of the tuning/retuning hypothesis. Life Sci 87:339–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhang Y, Xie Z, Zhou G, Zhang H, Lu J, Zhang WJ (2010) Fructose-1,6-bisphosphatase regulates glucose-stimulated insulin secretion of mouse pancreatic β-cells. Endocrinology 151:4688–4695

    Article  CAS  PubMed  Google Scholar 

  43. Palsamy P, Subramanian S (2009) Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin–nicotinamide- induced diabetic rats. Chem Biol Interact 179:356–362

    Article  CAS  PubMed  Google Scholar 

  44. Barbora V, Norbert S, Robert LS, Aramesh S, Richard PE, Clifton B (2002) High alanine amino transferase associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 51:1889–1895

    Article  Google Scholar 

  45. Yogalakshmi B, Viswanathan P, Anuradha CV (2010) Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology 268:204–212

    Article  CAS  PubMed  Google Scholar 

  46. Alderson NL, Chachich ME, Frizzell N, Canning P, Metz TO, Januszewski AS (2004) Effect of antioxidants and ACE inhibition on chemical modification of proteins and progression of nephropathy in streptozotocin diabetic rat. Diabetologia 47:1385–1395

    Article  CAS  PubMed  Google Scholar 

  47. Hayden MR, Tyagi SC (2002) Intimal redox stress: accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus. Atheroscleropathy. Cardiovasc Diabetol 1:3–8

    Article  PubMed Central  PubMed  Google Scholar 

  48. Canada SE, Weaver SA, Sharpe SN, Pederson BA (2011) Brain glycogen super compensation in the mouse after recovery from insulin-induced hypoglycemia. J Neurosci Res 89:585–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Thamizhiniyan V, Subramanian S (2012) Antidiabetic activity of gossypin, a pentahydroxyflavone glucoside, in streptozotocin-induced experimental diabetes in rats. J Diabetes 4:41–46

    Article  Google Scholar 

  50. Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS (2006) Antihyperglycemic and Antioxidant Properties of Caffeic Acid in db/db Mice. J Pharmacol Exp Ther 318:476–483

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors of this article do not have any conflict of interest to disclose. No part of the manuscript has been submitted or is under consideration in any other publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramani Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, S., Sathish, G., Jayanthi, M. et al. Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats. Mol Cell Biochem 385, 159–168 (2014). https://doi.org/10.1007/s11010-013-1824-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1824-2

Keywords

Navigation