Molecular and Cellular Biochemistry

, Volume 384, Issue 1–2, pp 147–153 | Cite as

Anticancer potential of rhamnocitrin 4′-β-d-galactopyranoside against N-diethylnitrosamine-induced hepatocellular carcinoma in rats

  • Shakir Saleem
  • Md Adil Shaharyar
  • Mohammad Jawed Khusroo
  • Parwej Ahmad
  • Rais Ur Rahman
  • Kamran Ahmad
  • Md Jahangir Alam
  • Naif O Al-Harbi
  • Muzaffar Iqbal
  • Faisal Imam
Article

Abstract

The hepatoprotective activity of flavonoid rhamnocitrin 4′-β-d-galactopyranoside (RGP) obtained from leaves of Astragalus hamosus L. against N-diethylnitrosamine (DENA)-induced hepatic cancer in Wistar albino rats was evaluated. Hepatic cancer in rats was induced by single-dose intraperitoneal administration of DENA (200 mg/kg). Induction of hepatic cancer was confirmed after 7 days of DENA administration by measurement of elevated level of serum α-feto protein (AFP). Administration of DENA in a single dose lofted the levels of serum biochemical parameters like alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, total protein and AFP. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and lipid per oxidation (LPO) were annealed significantly by administration of RGP in a dose-dependant manner. The histopathological examination of rat liver section was found to reinforce the biochemical observations significantly. It was observed that a substantial and dose-dependent reversal of DENA-diminished activity of antioxidant enzymes like SOD, CAT, GPx, GST and the reduced DENA-elevated level of LPO with a marked change. Any elevation in the levels of serum markers along with suppression of free radical formation by scavenging the hydroxyl radicals is significantly prevented by RGP. It also modulates the levels of LPO and perceptibly increases the endogenous antioxidant enzymes level in DENA-induced hepatocellular carcinogenesis. The findings suggest that RGP prevents hepatocellular carcinoma by suppressing the marked increase in the levels of serum marker enzymes, and suppresses the free radical by scavenging hydroxyl radicals.

Keywords

DENA Hepatocellular carcinoma Rhamnocitrin 4′-β-d-galactopyranoside Biochemical parameters Anticancer 

Notes

Acknowledgments

The authors would like to extend their sincere appreciation to the deanship of scientific research at the King Saud University for its funding of this research through the research Group Project No. RGP-VPP-305.

Disclosure

None.

References

  1. 1.
    Seeff LB (2004) Introduction: the burden of hepatocellular carcinoma. Gastroenterology 127:4CrossRefGoogle Scholar
  2. 2.
    Chien JC, Hwai IY, Jun S, Chin LJ, San LY, Shang NL, Guan TH, Uchenna HI (2006) Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 295:65–73CrossRefGoogle Scholar
  3. 3.
    Rao PGM, Rao SG, Kumar V (1993) Effect of hepatogard against carbon tetrachloride induced liver damage in rats. Fitoterapia 64:108–113Google Scholar
  4. 4.
    Grisham JW (2001) Molecular genetic alterations in primary hepatocellular neoplasms: hepatocellular adenoma, hepatocellular carcinoma, and hepatoblastoma. In: Colema WB, Tsongalis GJ (eds) The molecular basis of human cancer. Humana Press, Totowa, pp 269–346Google Scholar
  5. 5.
    Bosch FX, Ribes J, Borràs J (1999) Epidemiology of primary liver cancer. Semin Liver Dis 19:271–285PubMedCrossRefGoogle Scholar
  6. 6.
    Buendia MA (2000) Genetics of hepatocellular carcinoma. Semin Cancer Biol 10:185–200PubMedCrossRefGoogle Scholar
  7. 7.
    Brechot C (1998) Molecular mechanisms of hepatitis B and C related to liver carcinogenesis. Hepatogastroenterol 45(Suppl 3):1189–1196Google Scholar
  8. 8.
    Diao J, Garces R, Richardson CD (2001) X protein of hepatitis B virus modulates cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis (survey). Cytokine Growth Factor Rev 12:189–205PubMedCrossRefGoogle Scholar
  9. 9.
    Alter MJ (2007) Epidemiology of hepatitis C virus infection. World J Gastroenterol 13(17):2436–2441PubMedGoogle Scholar
  10. 10.
    Bhosale P, Motiwale L, Ignle AD, Gadre RV, Rao KVK (2002) Protective effect of Rhodotorula glutinis NCIM3353 on the development of hepatic preneoplastic lesions. Curr Sci 83(3):303–308Google Scholar
  11. 11.
    Anis KV, Kumar R, Kuttan R (2001) Inhibition of chemical carcinogenesis by biberine in rats and mice. J Pharm Pharmacol 53:763–768PubMedCrossRefGoogle Scholar
  12. 12.
    Chakraborty T, Chatterjee A, Rana A, Dhachinamoorthi D, Kumar PA, Chatterjee M (2007) Carcinogen induced early molecular events and its implication in the initiation of chemical hepatocarcinogenesis in rats: chemopreventive role of vanadium on this process. Biochim Biophys Acta 1772(1):48–59PubMedCrossRefGoogle Scholar
  13. 13.
    Ramakrishnan G, Raghavendran HR, Vinodhkumar R, Devaki T (2006) Suppression of N-nitrosodiethylamine induced hepatocarcinogenesis by Silymarin in rats. Chem Biol Interact 161(2):104–114PubMedCrossRefGoogle Scholar
  14. 14.
    Valkoo M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals metals and antioxidants in oxidative stress induced cancer. Chem Biol Interact 160(1):1–40CrossRefGoogle Scholar
  15. 15.
    Squire RA, Levitt MH (1975) Report of a workshop on classification of specific Hepatocellular lesions in rats. Cancer Res 35:3214PubMedGoogle Scholar
  16. 16.
    Bannasch P (1976) Cytology and cytogenesis of neoplastic (hyperplastic) hepatic nodules. Cancer Res 26:2555Google Scholar
  17. 17.
    Barbason H, Betz EH (1981) Proliferation of preneoplastic lesions after discontinuation of chronic DENA feeding in the development of hepatomas in rat. Br J Cancer 44:561PubMedCrossRefGoogle Scholar
  18. 18.
    Hemminki K (1993) DNA adducts mutations and cancer. Carcinogenesis 14:2007–2012PubMedCrossRefGoogle Scholar
  19. 19.
    Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Inves 107:135–142CrossRefGoogle Scholar
  20. 20.
    Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356PubMedCrossRefGoogle Scholar
  21. 21.
    Krasteva I, Platikanov S, Nikolov S, Kaloga M (2007) Flavonoids from Astragalus hamosus. Nat Prod Res 21:392–395PubMedCrossRefGoogle Scholar
  22. 22.
    Hong JT, Yen JH, Yen JH, Wang L, Lo YH, Chen ZT, Wu MJ (2009) Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells. Toxicol Appl Pharmacol 237(1):59–68PubMedCrossRefGoogle Scholar
  23. 23.
    Tessitore L, Tomasi C, Greco M, Sesca E, Laconi E, Maccioni O et al (1996) A subnecrogenic dose of diethylnitrosamine is able to initiate hepatocarcinogenesis in the rat when coupled with fasting/refeeding. Carcinogenesis 17(2):289–292PubMedCrossRefGoogle Scholar
  24. 24.
    Premalatha B, Sachdanandam P (1999) Effect of Semecarpus anacardium nut milk extract on rat serum alpha-feto protein level in aflatoxin B mediated hepatocellular carcinoma. Fitoterapia 70:279–283CrossRefGoogle Scholar
  25. 25.
    Martinek R (1969) Practical clinical enzymology. Am J Med Technol 31:162Google Scholar
  26. 26.
    Pratt DS, Kaplan MM (2000) Evaluation of abnormal liver enzyme results in asymptomatic patients. N Eng J Med 342:1266CrossRefGoogle Scholar
  27. 27.
    Drotman RB, Lawhorn GT (1978) Serum enzymes are indicators of chemical induced liver damage. Drug Chem Toxicol 1:163–171PubMedCrossRefGoogle Scholar
  28. 28.
    Ploa GL, Hewitt WR (1989) Detection and evaluation of chemically induced liver injury. In: Wallace HA (ed) Principle and methods of toxicology. Raven Press, New York, p 399Google Scholar
  29. 29.
    Clawson GA (1989) Mechanism of carbon tetrachloride hepatotoxicity. Pathol Immunopathol Res 8:104–112PubMedCrossRefGoogle Scholar
  30. 30.
    Esterbauer H, Chesseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxy-nonenal. Methods Enzymol 186:407–421PubMedCrossRefGoogle Scholar
  31. 31.
    Marnett LJ (1999) DNA damage by malondialdehyde. Mutation Res 424(1–2):83–95PubMedGoogle Scholar
  32. 32.
    Muller FL, Lustgarten MS, Jang Y, Richardson A, Van RH (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503PubMedCrossRefGoogle Scholar
  33. 33.
    Hietanen E, Ahotupa M, Bartsch H (1987) Lipid peroxidation and chemically induced cancer in rats fed lipid rich diet. In: Lapis K, Kcharst S (eds) Carcinogensis and tumor progression. Akademiaikiado, Budapest, pp 9–16Google Scholar
  34. 34.
    Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267PubMedCrossRefGoogle Scholar
  35. 35.
    Heinrich P, Georg L, Petro E (2006) Biochemie und pathobiochemie. Springer, Berlin, p 399Google Scholar
  36. 36.
    Li Y, Huang TT, Carlson EJ, Meloy S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11(4):376–381PubMedCrossRefGoogle Scholar
  37. 37.
    Robak J, Glyglewsi RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shakir Saleem
    • 1
  • Md Adil Shaharyar
    • 1
  • Mohammad Jawed Khusroo
    • 2
  • Parwej Ahmad
    • 3
  • Rais Ur Rahman
    • 7
  • Kamran Ahmad
    • 1
  • Md Jahangir Alam
    • 4
  • Naif O Al-Harbi
    • 6
  • Muzaffar Iqbal
    • 5
  • Faisal Imam
    • 6
  1. 1.Department of PharmacologyLuqman College of PharmacyGulbargaIndia
  2. 2.Department of Pharmacology, Faculty of PharmacyJamia HamdardNew DelhiIndia
  3. 3.Faculty of UnaniJamia HamdardNew DelhiIndia
  4. 4.Department of Pharmaceutical ChemistryJamia HamdardNew DelhiIndia
  5. 5.Department of Pharmaceutical Chemistry, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  6. 6.Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  7. 7.Sri Siddhartha Medical College and Research CentreTumkurIndia

Personalised recommendations