Skip to main content
Log in

PIP3 but not PIP2 increases GLUT4 surface expression and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation in 3T3L1 adipocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Phosphatidylinositol-3,4,5-triphosphate (PIP3) and phosphatidylinositol-4,5-biphosphate (PIP2) are two well-known membrane bound polyphosphoinositides. Diabetes is associated with impaired glucose metabolism. Using a 3T3L1 adipocyte cell model, this study investigated the role of PIP3 and PIP2 on insulin stimulated glucose metabolism in high glucose (HG) treated cells. Exogenous PIP3 supplementation (1, 5, or 10 nM) increased the phosphorylation of AKT and PKCζ/λ, which in turn upregulated GLUT4 total protein expression as well as its surface expression, glucose uptake, and glucose utilization in cells exposed to HG (25 mM); however, PIP2 had no effect. Comparative signal silencing studies with antisense AKT2 and antisense PKCζ revealed that phosphorylation of PKCζ/λ is more effective in PIP3 mediated GLUT4 activation and glucose utilization than in AKT phosphorylation. Supplementation with PIP3 in combination with insulin enhanced glucose uptake and glucose utilization compared to PIP2 with insulin, or insulin alone, in HG-treated adipocytes. This suggests that a decrease in cellular PIP3 levels may cause impaired insulin sensitivity in diabetes. PIP3 supplementation also prevented HG-induced MCP-1 and resistin secretion and lowered adiponectin levels. This study for the first time demonstrates that PIP3 but not PIP2 plays an important role in GLUT4 upregulation and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation. Whether PIP3 levels in blood can be used as a biomarker of insulin resistance in diabetes needs further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pendaries C, Tronchère H, Plantavid M, Payrastre B (2003) Phosphoinositide signaling disorders in human diseases. FEBS Lett 546:25–31

    Article  PubMed  CAS  Google Scholar 

  2. Czech MP (2000) PIP2 and PIP3: complex roles at the cell surface. Cell 100:603–606

    Article  PubMed  CAS  Google Scholar 

  3. Hinchliffe KA (2001) Cellular signalling: stressing the importance of PIP3. Curr Biol 11:R371–R3373

    Article  PubMed  CAS  Google Scholar 

  4. Park WS, Heo WD, Whalen JH, O’Rourke NA, Bryan HM, Meyer T, Teruel MN (2008) Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging. Mol Cell 30:381–392

    Article  PubMed  CAS  Google Scholar 

  5. Várnai P, Bondeva T, Tamás P, Tóth B, Buday L, Hunyady L, Balla T (2005) Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J Cell Sci 118:4879–4888

    Article  PubMed  Google Scholar 

  6. Toker A (1998) The synthesis and cellular roles of phosphatidylinositol-4,5-bisphosphate. Curr Opin Cell Biol 10:254–261

    Article  PubMed  CAS  Google Scholar 

  7. Taniguchi CM, Tran TT, Kondo T et al (2006) Phosphoinositide 3-kinase regulatory subunit p85alpha suppresses insulin action via positive regulation of PTEN. Proc Natl Acad Sci USA 103:12093–12097

    Article  PubMed  CAS  Google Scholar 

  8. Butler M, McKay RA, Popoff IJ et al (2002) Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice. Diabetes 51:1028–1034

    Article  PubMed  CAS  Google Scholar 

  9. Ono H, Katagiri H, Funaki M et al (2001) Regulation of phosphoinositide metabolism, AKT phosphorylation, and glucose transport by PTEN (phosphatase and tensin homolog deleted on chromosome 10) in 3T3-L1 adipocytes. Mol Endocrinol 15:1411–1422

    Article  PubMed  CAS  Google Scholar 

  10. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  PubMed  CAS  Google Scholar 

  11. Manna P, Jain SK (2011) Hydrogen sulfide and l-cysteine increase phosphatidylinositol-3,4,5-trisphosphate (PIP3) and glucose utilization by inhibiting phosphatase and tensin homolog (PTEN) protein and activating phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT)/protein kinase Cζ/λ (PKCζ/λ) in 3T3L1 adipocytes. J Biol Chem 286:39848–39859

    Article  PubMed  CAS  Google Scholar 

  12. Candiloros H, Muller S, Zeghari N, Donner M, Drouin P, Ziegler O (1995) Decreased erythrocyte membrane fluidity in poorly controlled IDDM. Influence of ketone bodies. Diabetes Care 18:549–551

    Article  PubMed  CAS  Google Scholar 

  13. Jung DW, Ha HH, Zheng X, Chang YT, Williams DR (2011) Novel use of fluorescent glucose analogues to identify a new class of triazine-based insulin mimetics possessing useful secondary effects. Mol Biosyst 7:346–358

    Article  PubMed  CAS  Google Scholar 

  14. Koshy S, Alizadeh P, Timchenko LT, Beeton C (2010) Quantitative measurement of GLUT4 translocation to the plasma membrane by flow cytometry. J Vis Exp 45:e2429

    Google Scholar 

  15. Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575

    Article  PubMed  CAS  Google Scholar 

  16. Sasaki T, Sasaki J, Sakai T, Takasuga S, Suzuki A (2007) The physiology of phosphoinositides. Biol Pharm Bull 30:1599–1604

    Article  PubMed  CAS  Google Scholar 

  17. Bandyopadhyay G, Kanoh Y, Sajan MP, Standaert ML, Farese RV (2000) Effects of adenoviral gene transfer of wild-type, constitutively active, and kinase-defective protein kinase C-lambda on insulin-stimulated glucose transport in L6 myotubes. Endocrinology 141:4120–4127

    Article  PubMed  CAS  Google Scholar 

  18. Bandyopadhyay G, Standaert ML, Galloway L, Moscat J, Farese RV (1997) Evidence for involvement of protein kinase C (PKC)-zeta and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes. Endocrinology 138:4721–4731

    Article  PubMed  CAS  Google Scholar 

  19. Bandyopadhyay G, Standaert ML, Zhao L et al (1997) Activation of protein kinase C (alpha, beta, and zeta) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-zeta in glucose transport. J Biol Chem 272:2551–2558

    Article  PubMed  CAS  Google Scholar 

  20. Kotani K, Ogawa W, Matsumoto M et al (1998) Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol Cell Biol 18:6971–6982

    PubMed  CAS  Google Scholar 

  21. Farese RV (2002) Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 283:E1–E11

    PubMed  CAS  Google Scholar 

  22. Olson AL, Pessin JE (1996) Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr 16:235–256

    Article  PubMed  CAS  Google Scholar 

  23. Jiang T, Sweeney G, Rudolf MT, Klip A, Traynor-Kaplan A, Tsien RY (1998) Membrane-permeant esters of phosphatidylinositol-3,4,5-trisphosphate. J Biol Chem 273:11017–11024

    Article  PubMed  CAS  Google Scholar 

  24. Funaki M, DiFransico L, Janmey PA (2006) PI-4,5-P2 stimulates glucose transport activity of GLUT4 in the plasma membrane of 3T3-L1 adipocytes. Biochim Biophys Acta 1763:889–899

    Article  PubMed  CAS  Google Scholar 

  25. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Article  PubMed  CAS  Google Scholar 

  26. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM et al (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    Article  PubMed  CAS  Google Scholar 

  27. Egashira K (2003) Molecular mechanisms mediating inflammation in vascular disease: special reference to monocyte chemoattractant protein-1. Hypertension 41:834–841

    Article  PubMed  CAS  Google Scholar 

  28. Beeson M, Sajan MP, Dizon M, Grebenev D, Gomez-Daspet J, Miura A et al (2003) Activation of protein kinase C-zeta by insulin and phosphatidylinositol-3,4,5-(PO4)3 is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise. Diabetes 52:1926–1934

    Article  PubMed  CAS  Google Scholar 

  29. Kim YB, Kotani K, Ciaraldi TP, Henry RR, Kahn BB (2003) Insulin-stimulated protein kinase C lambda/zeta activity is reduced in skeletal muscle of humans with obesity and type 2 diabetes: reversal with weight reduction. Diabetes 52:1935–1942

    Article  PubMed  CAS  Google Scholar 

  30. Xiao H, Liu M (2012) Atypical protein kinase C in cell motility. Cell Mol Life Sci (in press)

  31. Hirai T, Chida K (2003) Protein kinase Czeta (PKCzeta): activation mechanisms and cellular functions. J Biochem 133:1–7

    Article  PubMed  CAS  Google Scholar 

  32. Beeson M, Sajan MP, Daspet JG, Luna V, Dizon M, Grebenev D et al (2004) Defective activation of protein kinase C–z in muscle by insulin and phosphatidylinositol-3,4,5,-(PO(4))(3) in obesity and polycystic ovary syndrome. Metab Syndr Relat Disord 2:49–56

    PubMed  CAS  Google Scholar 

  33. Vollenweider P, Menard B, Nicod P (2002) Insulin resistance, defective insulin receptor substrate 2-associated phosphatidylinositol- 3-kinase activation, and impaired atypical protein kinase C (ζ/λ) activation in myotubes from obese patients with impaired glucose tolerance. Diabetes 15:1052–1059

    Article  Google Scholar 

  34. Luna V, Casauban L, Sajan MP, Gomez-Daspet J, Powe JL, Miura A et al (2006) Metformin improves atypical protein kinase C activation by insulin and phosphatidylinositol-3,4,5-(PO4)3 in muscle of diabetic subjects. Diabetologia 49:375–382

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Georgia Morgan for excellent editing of this manuscript. The authors were supported by Grants from NIDDK and the Office of Dietary Supplements of the National Institutes of Health RO1 DK072433 and the Malcolm Feist Endowed Chair in Diabetes. This study was also funded by a fellowship from the Malcolm Feist Cardiovascular Research Endowment, LSU Health Sciences Center, Shreveport.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manna, P., Jain, S.K. PIP3 but not PIP2 increases GLUT4 surface expression and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation in 3T3L1 adipocytes. Mol Cell Biochem 381, 291–299 (2013). https://doi.org/10.1007/s11010-013-1714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1714-7

Keywords

Navigation