Skip to main content
Log in

Senescence-induced increases in intracellular oxidative stress and enhancement of the need for ascorbic acid in human fibroblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Many studies have suggested that there is a close correlation among declines in internal ascorbic acid (AsA) levels, various disorders, and senescence. To clarify the relationships between age-associated changes in intracellular AsA levels and the effects of AsA administration on intracellular reactive oxygen species (ROS) levels, we investigated aging-related changes in AsA uptake, ROS levels, and the effects of AsA administration on intracellular ROS levels in young and old (senescent) human fibroblasts. Our results demonstrated that AsA uptake was increased in old cells compared with young cells, although mRNA and protein expression of sodium-dependent vitamin C transporter 2 was barely altered between the young and old cells. We also demonstrated that the intracellular superoxide anion level was higher in young cells, whereas the level of intracellular peroxides was significantly increased in old cells under both normal and oxidative stress conditions. Moreover, AsA administration markedly decreased the augmentation of intracellular peroxides in old cells, whereas there was no effect of AsA treatment in young cells under both normal and oxidative stress conditions. Therefore, our results also indicate that AsA could play an important role in regulating the intracellular ROS levels in senescent cells and that the need for AsA is enhanced by cellular senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rose RC, Bode AM (1993) Biology of free radical scavengers: an evaluation of ascorbate. FASEB J 7:1135–1142

    CAS  PubMed  Google Scholar 

  2. Padh H (1991) Vitamin C: newer insights into its biochemical functions. Nutr Rev 49:65–70

    Article  CAS  PubMed  Google Scholar 

  3. Nishikimi M (1975) Oxidation of ascorbic acid with superoxide anion generated by the xanthine–xanthine oxidase system. Biochem Biophys Res Commun 63:463–468

    Article  CAS  PubMed  Google Scholar 

  4. Bodannes RS, Chan PC (1979) Ascorbic acid as a scavenger of singlet oxygen. FEBS Lett 105:195–196

    Article  CAS  PubMed  Google Scholar 

  5. Bielski BH, Richter HW, Chan PC (1975) Some properties of the ascorbate free radical. Ann N Y Acad Sci 258:231–237

    Article  CAS  PubMed  Google Scholar 

  6. Halliwell B, Gutteridge JM (1990) The antioxidants of human extracellular fluids. Arch Biochem Biophys 280:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Niki E (1991) Selected vitamins, minerals and functional consequences of maternal malnutrition. In: World Rev Nutr Diet, Karger, Basel, p 1–30

  8. Sasaki R, Kurokawa T, Kobayasi T, Tero-Kubota S (1983) Influences of sex and age on serum ascorbic acid. Tohoku J Exp Med 140:97–104

    Article  CAS  PubMed  Google Scholar 

  9. Rhie G, Shin MH, Seo JY, Choi WW, Cho KH, Kim KH, Park KC, Eun HC, Chung JH (2001) Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J Invest Dermatol 117:1212–1217

    Article  CAS  PubMed  Google Scholar 

  10. Hornig B, Arakawa N, Kohler C, Drexler H (1998) Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 97:363–368

    Article  CAS  PubMed  Google Scholar 

  11. Masaki KH, Losonczy KG, Izmirlian G, Foley DJ, Ross GW, Petrovitch H, Havlik R, White LR (2000) Association of vitamin E and C supplement use with cognitive function and dementia in elderly men. Neurology 54:1265–1272

    Article  CAS  PubMed  Google Scholar 

  12. Yoshida M, Takashima Y, Inoue M, Iwasaki M, Otani T, Sasaki S, Tsugane S, JPHC Study Group (2007) Prospective study showing that dietary vitamin C reduced the risk of age-related cataracts in a middle-aged Japanese population. Eur J Nutr 46:118–124

    Article  CAS  PubMed  Google Scholar 

  13. Aguirre R, May JM (2008) Inflammation in the vascular bed: importance of vitamin C. Pharmacol Ther 119:96–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Harding AH, Wareham NJ, Bingham SA, Khaw K, Luben R, Welch A, Forouhi NG (2008) Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: the European prospective investigation of cancer–Norfolk prospective study. Arch Intern Med 168:1493–1499

    Article  PubMed  Google Scholar 

  15. Massip L, Garand C, Paquet ER, Cogger VC, O’Reilly JN, Tworek L, Hatherell A, Taylor CG, Thorin E, Zahradka P, Le Couteur DG, Lebel M (2010) Vitamin C restores healthy aging in a mouse model for Werner syndrome. FASEB J 24:158–172

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ishigami A, Kondo Y, Nanba R, Ohsawa T, Handa S, Kubo S, Akita M, Maruyama N (2004) SMP30 deficiency in mice causes an accumulation of neutral lipids and phospholipids in the liver and shortens the life span. Biochem Biophys Res Commun 315:575–580

    Article  CAS  PubMed  Google Scholar 

  17. Mori T, Ishigami A, Seyama K, Onai R, Kubo S, Shimizu K, Maruyama N, Fukuchi Y (2004) Senescence marker protein-30 knockout mouse as a novel murine model of senile lung. Pathol Int 54:167–173

    Article  CAS  PubMed  Google Scholar 

  18. Sato T, Seyama K, Sato Y, Mori H, Souma S, Akiyoshi T, Kodama Y, Mori T, Goto S, Takahashi K, Fukuchi Y, Maruyama N, Ishigami A (2006) Senescence marker protein-30 protects mice lungs from oxidative stress, aging, and smoking. Am J Respir Crit Care Med 174:530–537

    Article  CAS  PubMed  Google Scholar 

  19. Son TG, Zou Y, Jung KJ, Yu BP, Ishigami A, Maruyama N, Lee J (2006) SMP30 deficiency causes increased oxidative stress in brain. Mech Ageing Dev 127:451–457

    Article  CAS  PubMed  Google Scholar 

  20. Yumura W, Imasawa T, Suganuma S, Ishigami A, Handa S, Kubo S, Joh K, Maruyama N (2006) Accelerated tubular cell senescence in SMP30 knockout mice. Histol Histopathol 21:1151–1156

    CAS  PubMed  Google Scholar 

  21. Hasegawa G, Yamasaki M, Kadono M, Tanaka M, Asano M, Senmaru T, Kondo Y, Fukui M, Obayashi H, Maruyama N, Nakamura N, Ishigami A (2010) Senescence marker protein-30/gluconolactonase deletion worsens glucose tolerance through impairment of acute insulin secretion. Endocrinology 151:529–536

    Article  CAS  PubMed  Google Scholar 

  22. Park H, Ishigami A, Shima T, Mizuno M, Maruyama N, Yamaguchi K, Mitsuyoshi H, Minami M, Yasui K, Itoh Y, Yoshikawa T, Fukui M, Hasegawa G, Nakamura N, Ohta M, Obayashi H, Okanoue T (2010) Hepatic senescence marker protein-30 is involved in the progression of nonalcoholic fatty liver disease. J Gastroenterol 45:426–434

    Article  CAS  PubMed  Google Scholar 

  23. Ishigami A (2010) Anti-aging research using SMP30/GNL knockout mice. Yakugaku Zasshi 130:25–28

    Article  CAS  PubMed  Google Scholar 

  24. Senmaru T, Yamazaki M, Okada H, Asano M, Fukui M, Nakamura N, Obayashi H, Kondo Y, Maruyama N, Ishigami A, Hasegawa G (2012) Pancreatic insulin release in vitamin C-deficient senescence marker protein-30/gluconolactonase knockout mice. J Clin Biochem Nutr 50:114–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ishikawa Y, Hashizume K, Kishimoto S, Tezuka Y, Nishigori H, Yamamoto N, Kondo Y, Maruyama N, Ishigami A, Kurosaka D (2012) Effect of vitamin C depletion on UVR-B induced cataract in SMP30/GNL knockout mice. Exp Eye Res 94:85–89

    Article  CAS  PubMed  Google Scholar 

  26. Kondo Y, Sasaki T, Sato Y, Amano A, Aizawa S, Iwama M, Handa S, Shimada N, Fukuda M, Akita M, Lee J, Jeong KS, Maruyama N, Ishigami A (2008) Vitamin C depletion increases superoxide generation in brains of SMP30/GNL knockout mice. Biochem Biophys Res Commun 377:291–296

    Article  CAS  PubMed  Google Scholar 

  27. Arai KY, Sato Y, Kondo Y, Kudo C, Tsuchiya H, Nomura Y, Ishigami A, Nishiyama T (2009) Effects of vitamin C deficiency on the skin of the senescence marker protein-30 (SMP30) knockout mouse. Biochem Biophys Res Commun 385:478–483

    Article  CAS  PubMed  Google Scholar 

  28. Farriol M, Mourelle M, Schwartz S (1994) Effect of ascorbic acid and vitamin E analog on aged fibroblasts. Rev Esp Fisiol 50:253–257

    CAS  PubMed  Google Scholar 

  29. Kashino G, Kodama S, Nakayama Y, Suzuki K, Fukase K, Goto M, Watanabe M (2003) Relief of oxidative stress by ascorbic acid delays cellular senescence of normal human and Werner syndrome fibroblast cells. Free Radic Biol Med 35:438–443

    Article  CAS  PubMed  Google Scholar 

  30. Hwang WS, Park SH, Kim HS, Kang HJ, Kim MJ, Oh SJ, Park JB, Kim J, Kim SC, Lee JY (2007) Ascorbic acid extends replicative life span of human embryonic fibroblast by reducing DNA and mitochondrial damages. Nutr Res Pract 1:105–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Furumoto K, Inoue E, Nagao N, Hiyama E, Miwa N (1998) Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci 63:935–948

    Article  CAS  PubMed  Google Scholar 

  32. Shima N, Kimoto M, Yamaguchi M, Yamagami S (2011) Increased proliferation and replicative lifespan of isolated human corneal endothelial cells with l-ascorbic acid 2-phosphate. Invest Ophthalmol Vis Sci 52:8711–8717

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe S, Saitoh Y, Namba M, Miwa N (2010) Administration with telomeric DNA telomere-like oligonucleotides induces enhancement of telomerase activity and resistance against oxidative stress in telomere reverse transcriptase gene-transfected human fibroblasts. Biomed Pharmacother 64:565–571

    Article  CAS  PubMed  Google Scholar 

  34. Schrenzel J, Serrander L, Banfi B, Niisse O, Fouyouzi R, Lew DP, Demaurex N, Krause KH (1998) Electron currents generated by the human phagocyte NADPH oxidase. Nature 392:734–737

    Article  CAS  PubMed  Google Scholar 

  35. Savini I, Rossi A, Pierro C, Avigliano L, Catani MV (2008) SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 34:347–355

    Article  CAS  PubMed  Google Scholar 

  36. Rivas CI, Zúñiga FA, Salas-Burgos A, Mardones L, Ormazabal V, Vera JC (2008) Vitamin C transporters. J Physiol Biochem 64:357–375

    Article  CAS  PubMed  Google Scholar 

  37. Corti A, Casini AF, Pompella A (2010) Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Arch Biochem Biophys 500:107–115

    Article  CAS  PubMed  Google Scholar 

  38. Savini I, Rossi A, Catani MV, Ceci R, Avigliano L (2007) Redox regulation of vitamin C transporter SVCT2 in C2C12 myotubes. Biochem Biophys Res Commun 361:385–390

    Article  CAS  PubMed  Google Scholar 

  39. García Mde L, Salazar K, Millán C, Rodríguez F, Montecinos H, Caprile T, Silva C, Cortes C, Reinicke K, Vera JC, Aguayo LG, Olate J, Molina B, Nualart F (2005) Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Glia 50:32–47

    Article  PubMed  Google Scholar 

  40. Mun GH, Kim MJ, Lee JH, Kim HJ, Chung YH, Chung YB, Kang JS, Hwang YI, Oh SH, Kim JG, Hwang DH, Shin DH, Lee WJ (2006) Immunohistochemical study of the distribution of sodium-dependent vitamin C transporters in adult rat brain. J Neurosci Res 83:919–928

    Article  CAS  PubMed  Google Scholar 

  41. Michels AJ, Joisher N, Hagen TM (2003) Age-related decline of sodium-dependent ascorbic acid transport in isolated rat hepatocytes. Arch Biochem Biophys 410:112–120

    Article  CAS  PubMed  Google Scholar 

  42. Saitoh Y, Fukuoka Y, Nishikimi M, Miwa N (2007) Transfection with glutathione-dependent dehydroascorbate reductase genes exerts cytoprotective effects against hydroperoxide-induced cell injury through vitamin C regeneration and oxidative-stress diminishment. Gene Ther Mol Biol 11:143–150

    Google Scholar 

  43. Halliwell B, Gutteridge JM (1994) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    Google Scholar 

  44. Allen RG, Tresini M, Keogh BP, Doggett DL, Cristofalo VJ (1999) Differences in electron transport potential, antioxidant defenses, and oxidant generation in young and senescent fetal lung fibroblasts (WI-38). J Cell Physiol 180:114–122

    Article  CAS  PubMed  Google Scholar 

  45. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TB, von Zglinicki T (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:e110

    Article  PubMed Central  PubMed  Google Scholar 

  46. Eklow L, Moldeus P, Orrenius S (1984) Oxidation of glutathione during hydroperoxide metabolism. A study using isolated hepatocytes and the glutathione reductase inhibitor 1,3-bis(2-chloroethyl)-1-nitrosourea. Eur J Biochem 138:459–463

    Article  CAS  PubMed  Google Scholar 

  47. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186

    Article  CAS  PubMed  Google Scholar 

  48. Yokoo S, Furumoto K, Hiyama E, Miwa N (2004) Slow-down of age-dependent telomere shortening is executed in human skin keratinocytes by hormesis-like-effects of trace hydrogen peroxide or by anti-oxidative effects of pro-vitamin C in common concurrently with reduction of intracellular oxidative stress. J Cell Biochem 93:588–597

    Article  CAS  PubMed  Google Scholar 

  49. Liu H, Colavitti R, Rovira II, Finkel T (2005) Redox-dependent transcriptional regulation. Circ Res 97:967–974

    Article  CAS  PubMed  Google Scholar 

  50. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722–728

    Article  CAS  PubMed  Google Scholar 

  51. Serrano M, Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell Biol 3:748–753

    Article  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by a Grant-in-Aid for Young Scientists (B) (No. 23700838 to Y.S). We would like to thank Dr. Shin Watanabe and Mr. Kazunori Shimodaira for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasukazu Saitoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitoh, Y., Morishita, A., Mito, S. et al. Senescence-induced increases in intracellular oxidative stress and enhancement of the need for ascorbic acid in human fibroblasts. Mol Cell Biochem 380, 129–141 (2013). https://doi.org/10.1007/s11010-013-1666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1666-y

Keywords

Navigation