Skip to main content

Advertisement

Log in

Transcriptional and post-translational regulation of mouse cation transport regulator homolog 1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Recently, cation transport regulator homolog 1 (Chac1) has been identified as a novel pro-apoptotic factor in cells under endoplasmic reticulum (ER) stress. Of the three major ER stress sensors, it is suggested that ATF4 participates in the transcriptional regulation of Chac1 gene expression. The precise characterization of the Chac1 promoter, however, has not yet been elucidated. In this study, we detected the induction of Chac1 mRNA expression using DNA array analysis and RT-PCR of thapsigargin (Tg)-inducible genes in Neuro2a cells. Chac1 mRNA expression was also induced immediately following treatment with tunicamycin (Tm) and brefeldin A. Characterization of the mouse Chac1 promoter activity using a luciferase reporter assay revealed that the CREB/ATF element and amino acid response element in the mouse Chac1 promoter are functional and respond to Tm stimulation and ATF4 overexpression. Mutations in either element in the Chac1 promoter did not inhibit the responsiveness of this promoter to Tm and ATF4; however, mutations in both of these elements dramatically decreased the basal activity and response to ER stress stimuli. In addition to the transcriptional regulation, we found that Chac1 protein expression was only detected in the presence of MG132, a proteasome inhibitor, even though mouse Chac1 gene was transiently overexpressed in Neuro2a cells. Taken together, we are the first to demonstrate the transcriptional and post-translational regulation of Chac1 expression in a neuronal cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AARE:

Amino acid response element

AP1:

Activator protein 1

ATF:

Activating transcription factor

BFA:

Brefeldin A

bZIP:

Basic leucine zipper

Chac1:

Cation transport regulator homolog 1

C/EBP:

CCAAT-enhancer-binding protein

CHOP:

C/EBP homologous protein

CREB:

cAMP response element binding protein

CRELD2:

Cysteine-rich with EGF-like domains 2

eIF2α:

Eukaryotic translation initiation factor 2A

ER:

Endoplasmic reticulum

ERSE:

ER stress response element

GADD153:

Growth arrest and DNA-damage-inducible protein 153

GRP78:

78 kDa glucose-regulated protein

IRE1:

Inositol-requiring enzyme 1

MANF:

Mesencephalic astrocyte-derived neurotrophic factor

Nrf2:

Nuclear factor (erythroid-derived 2)-like 2

PKA:

Protein kinase A

PERK:

PRKR-like endoplasmic reticulum kinase

RT-PCR:

Reverse transcription polymerase chain reaction

Tg:

Thapsigargin

Tm:

Tunicamycin

TRIB3:

Tribbles homolog 3

References

  1. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  CAS  PubMed  Google Scholar 

  2. Helenius A, Marquardt T, Braakman I (1992) The endoplasmic reticulum as a protein-folding compartment. Trends Cell Biol 2:227–231

    Article  CAS  PubMed  Google Scholar 

  3. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    Article  CAS  PubMed  Google Scholar 

  4. Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13:385–392

    Article  CAS  PubMed  Google Scholar 

  5. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  CAS  PubMed  Google Scholar 

  6. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  CAS  PubMed  Google Scholar 

  7. Zhu C, Johansen FE, Prywes R (1997) Interaction of ATF6 and serum response factor. Mol Cell Biol 17:4957–4966

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366:585–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Rutkowski DT, Kaufman RJ (2003) All roads lead to ATF4. Dev Cell 4:442–444

    Article  CAS  PubMed  Google Scholar 

  10. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  11. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Oh-hashi K, Koga H, Ikeda S, Shimada K, Hirata Y, Kiuchi K (2009) CRELD2 is a novel endoplasmic reticulum stress-inducible gene. Biochem Biophys Res Commun 387:504–510

    Article  CAS  PubMed  Google Scholar 

  13. Oh-hashi K, Tanaka K, Koga H, Hirata Y, Kiuchi K (2012) Intracellular trafficking and secretion of mouse mesencephalic astrocyte-derived neurotrophic factor. Mol Cell Biochem 363:35–41

    Article  CAS  PubMed  Google Scholar 

  14. Mizobuchi N, Hoseki J, Kubota H, Toyokuni S, Nozaki J, Naitoh M, Koizumi A, Nagata K (2007) ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Struct Funct 32:41–50

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev Cell 13:365–376

    Article  CAS  PubMed  Google Scholar 

  16. Wang M, Ye R, Barron E, Baumeister P, Mao C, Luo S, Fu Y, Luo B, Dubeau L, Hinton DR, Lee AS (2010) Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ 17:488–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265–271

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto K, Suzuki N, Wada T, Okada T, Yoshida H, Kaufman RJ, Mori K (2008) Human HRD1 promoter carries a functional unfolded protein response element to which XBP1 but not ATF6 directly binds. J Biochem 144:477–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  CAS  PubMed  Google Scholar 

  20. Berlanga JJ, Santoyo J, De Haro C (1999) Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2α kinase. Eur J Biochem 265:754–762

    Article  CAS  PubMed  Google Scholar 

  21. Chen JJ, London IM (1995) Regulation of protein synthesis by heme-regulated eIF-2α kinase. Trends Biochem Sci 20:105–108

    Article  CAS  PubMed  Google Scholar 

  22. Clemens MJ, Elia A (1997) The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 17:503–524

    Article  CAS  PubMed  Google Scholar 

  23. Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101:11269–11274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Jiang HY, Wek RC (2005) Phosphorylation of the α-subunit of the eukaryotic initiation factor-2 (eIF2α) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 280:14189–14202

    Article  CAS  PubMed  Google Scholar 

  25. Lange PS, Chavez JC, Pinto JT, Coppola G, Sun CW, Townes TM, Geschwind DH, Ratan RR (2008) ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J Exp Med 205:1227–1242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Woo CW, Cui D, Arellano J, Dorweiler B, Harding H, Fitzgerald KA, Ron D, Taba I (2009) Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat Cell Biol 11:1473–1480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Luethy JD, Fargnoli J, Park JS, Fornace AJ Jr, Holbrook NJ (1990) Isolation and characterization of the hamster gadd153 gene. Activation of promoter activity by agents that damage DNA. J Biol Chem 265:16521–16526

    CAS  PubMed  Google Scholar 

  28. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24:1243–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Mungrue IN, Pagnon J, Kohannim O, Gargalovic PS, Lusis AJ (2009) CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade. J Immunol 182:466–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Guyton KZ, Xu Q, Holbrook NJ (1996) Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element. Biochem J 314:547–554

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Oh-hashi K, Maehara K, Isobe K (2004) Hydrogen peroxide induces GADD153 in Jurkat cells through the protein kinase C-dependent pathway. Redox Rep 9:173–178

    Article  CAS  PubMed  Google Scholar 

  32. Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351–1365

    Article  CAS  PubMed  Google Scholar 

  33. Bruhat A, Jousse C, Carraro V, Reimold AM, Ferrara M, Fafournoux P (2000) Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Mol Cell Biol 20:7192–7204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Magne L, Blanc E, Legrand B, Lucas D, Barouki R, Rouach H, Garlatti M (2011) ATF4 and the integrated stress response are induced by ethanol and cytochrome P450 2E1 in human hepatocytes. J Hepatol 54:729–737

    Article  CAS  PubMed  Google Scholar 

  35. Romanoski CE, Che N, Yin F, Mai N, Pouldar D, Civelek M, Pan C, Lee S, Vakili L, Yang WP, Kayne P, Mungrue IN, Araujo JA, Berliner JA, Lusis AJ (2011) Network for activation of human endothelial cells by oxidized phospholipids: a critical role of heme oxygenase 1. Circ Res 109:e27–e41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Goebel G, Berger R, Strasak AM, Egle D, Müller-Holzner E, Schmidt S, Rainer J, Presul E, Parson W, Lang S, Jones A, Widschwendter M, Fiegl H (2012) Elevated mRNA expression of CHAC1 splicing variants is associated with poor outcome for breast and ovarian cancer patients. Br J Cancer 106:189–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Galluzzi L, De Santi M, Crinelli R, De Marco C, Zaffaroni N, Duranti A, Brandi G, Magnani M (2012) Induction of endoplasmic reticulum stress response by the indole-3-carbinol cyclic tetrameric derivative CTet in human breast cancer cell lines. PLoS One 7:e43249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Siu F, Bain PJ, LeBlanc-Chaffin R, Chen H, Kilberg MS (2002) ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem 277:24120–24127

    Article  CAS  PubMed  Google Scholar 

  39. Hai T, Hartman MG (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273:1–11

    Article  CAS  PubMed  Google Scholar 

  40. Johannessen M, Delghandi MP, Moens U (2004) What turns CREB on? Cell Signal 16:1211–1227

    Article  CAS  PubMed  Google Scholar 

  41. Navon A, Ciechanover A (2009) The 26 S proteasome: from basic mechanisms to drug targeting. J Biol Chem 284:33713–33718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Newman JR, Keating AE (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300:2097–2101

    Article  CAS  PubMed  Google Scholar 

  43. Su N, Kilberg MS (2008) C/EBP homology protein (CHOP) interacts with activating transcription factor 4 (ATF4) and negatively regulates the stress-dependent induction of the asparagine synthetase gene. J Biol Chem 283:35106–35117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM, Alam J (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276:20858–20865

    Article  CAS  PubMed  Google Scholar 

  45. Kumar A, Tikoo S, Maity S, Sengupta S, Sengupta S, Kaur A, Kumar A, Bachhawat AK (2012) Mammalian proapoptotic factor ChaC1 and its homologues function as γ-glutamyl cyclotransferases acting specifically on glutathione. EMBO Rep 13(12):1095–1101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Oh-hashi.

Additional information

Kentaro Oh-hashi, Yuki Nomura contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh-hashi, K., Nomura, Y., Shimada, K. et al. Transcriptional and post-translational regulation of mouse cation transport regulator homolog 1. Mol Cell Biochem 380, 97–106 (2013). https://doi.org/10.1007/s11010-013-1663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1663-1

Keywords

Navigation