Skip to main content
Log in

Time-dependent regulation of neuregulin-1β/ErbB/ERK pathways in cardiac differentiation of mouse embryonic stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Neuregulin-1β (NRG-1β)/ErbB signaling plays crucial roles in the cardiac differentiation of mouse embryonic stem cells (ESCs), but its roles and the underlying mechanisms in cardiac differentiation are incompletely understood. This study showed that NRG-1β significantly increased the percentage of beating embryoid bodies (EBs) and up-regulated the gene expressions of Nkx2.5, GATA4, α-actin, MLC-2v, and ANF in a time-dependent manner, with no effect on the gene expressions of HCN4 and Tbx3. Inhibition of ErbB receptors with AG1478 significantly decreased the percentage of beating EBs; down-regulated the gene expressions of Nkx2.5, GATA4, MLC-2v, ANF, and α-actin; and concomitantly up-regulated the gene expressions of HCN4 and Tbx3 in a time-dependent manner. Moreover, the up-regulation of transcripts for Nkx2.5 and GATA4 by NRG-1β was blocked by the extracellular signal-related kinases (ERK) 1/2 inhibitor, U0126. However, U0126 could not inhibit the transcript up-regulations of MLC-2v and ANF by NRG-1β. The protein quantitation results were consistent with those of gene quantitation. Our results suggest that NRG-1β/ErbB signaling plays critical roles in the cardiac differentiation of mouse ESCs and in the subtype specification of cardiomyocytes in a time-dependent manner. The ERK1/2 pathway may be involved in the early cardiogenesis, but not in the subtype specification of cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bongso A, Fong CY, Gauthaman K (2008) Taking stem cells to the clinic: major challenges. J Cell Biochem 105:1352–1360

    Article  CAS  PubMed  Google Scholar 

  2. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  CAS  PubMed  Google Scholar 

  3. Maltsev VA, Rohwedel J, Hescheler J, Wobus AM (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44:41–50

    Article  CAS  PubMed  Google Scholar 

  4. Maltsev VA, Wobus AM, Rohwedel J, Bader M, Hescheler J (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 75:233–244

    Article  CAS  PubMed  Google Scholar 

  5. Chen HS, Kim C, Mercola M (2009) Electrophysiological challenges of cell-based myocardial repair. Circulation 120:2496–2508

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chen K, Wu L, Wang ZZ (2008) Extrinsic regulation of cardiomyocyte differentiation of embryonic stem cells. J Cell Biochem 104:119–128

    Article  CAS  PubMed  Google Scholar 

  7. Behfar A, Zingman LV, Hodgson DM, Rauzier JM, Kane GC, Terzic A, Puceat M (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16:1558–1566

    Article  PubMed  Google Scholar 

  8. Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I (2006) Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci USA 103:19812–19817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sun X, Jin X, Zhang X, Liu C, Lei L, Jin L, Liu H (2011) Icariin induces mouse embryonic stem cell differentiation into beating functional cardiomyocytes. Mol Cell Biochem 349:117–123

    Article  CAS  PubMed  Google Scholar 

  10. Wiese C, Nikolova T, Zahanich I, Sulzbacher S, Fuchs J, Yamanaka S, Graf E, Ravens U, Boheler KR, Wobus AM (2011) Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin. Int J Cardiol 147:95–111

    Article  PubMed  Google Scholar 

  11. Chen M, Lin YQ, Xie SL, Wang JF (2009) Mitogen-activated protein kinase in endothelin-1-induced cardiac differentiation of mouse embryonic stem cells. J Cell Biochem 111:1619–1628

    Article  Google Scholar 

  12. Suk Kim H, Hidaka K, Morisaki T (2003) Expression of ErbB receptors in ES cell-derived cardiomyocytes. Biochem Biophys Res Commun 309:241–246

    Article  PubMed  Google Scholar 

  13. Kim HS, Cho JW, Hidaka K, Morisaki T (2007) Activation of MEK–ERK by heregulin-beta1 promotes the development of cardiomyocytes derived from ES cells. Biochem Biophys Res Commun 361:732–738

    Article  CAS  PubMed  Google Scholar 

  14. Wang Z, Xu G, Wu Y, Guan Y, Cui L, Lei X, Zhang J, Mou L, Sun B, Dai Q (2009) Neuregulin-1 enhances differentiation of cardiomyocytes from embryonic stem cells. Med Biol Eng Comput 47:41–48

    Article  PubMed  Google Scholar 

  15. Zhu WZ, Xie Y, Moyes KW, Gold JD, Askari B, Laflamme MA (2010) Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res 107:776–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chen M, Lin YQ, Xie SL, Wu HF, Wang JF (2010) Enrichment of cardiac differentiation of mouse embryonic stem cells by optimizing the hanging drop method. Biotechnol Lett 33:853–858

    Article  PubMed  Google Scholar 

  17. Falls DL (2003) Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284:14–30

    Article  CAS  PubMed  Google Scholar 

  18. Cote GM, Miller TA, Lebrasseur NK, Kuramochi Y, Sawyer DB (2005) Neuregulin-1alpha and beta isoform expression in cardiac microvascular endothelial cells and function in cardiac myocytes in vitro. Exp Cell Res 311:135–146

    Article  CAS  PubMed  Google Scholar 

  19. Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, Kelly RA (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273:10261–10269

    Article  CAS  PubMed  Google Scholar 

  20. Lemmens K, Fransen P, Sys SU, Brutsaert DL, De Keulenaer GW (2004) Neuregulin-1 induces a negative inotropic effect in cardiac muscle: role of nitric oxide synthase. Circulation 109:324–326

    Article  CAS  PubMed  Google Scholar 

  21. Rohrbach S, Niemann B, Silber RE, Holtz J (2005) Neuregulin receptors erbB2 and erbB4 in failing human myocardium: depressed expression and attenuated activation. Basic Res Cardiol 100:240–249

    Article  CAS  PubMed  Google Scholar 

  22. Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378:390–394

    Article  CAS  PubMed  Google Scholar 

  23. Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–398

    Article  CAS  PubMed  Google Scholar 

  24. Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390

    Article  CAS  PubMed  Google Scholar 

  25. Rentschler S, Zander J, Meyers K, France D, Levine R, Porter G, Rivkees SA, Morley GE, Fishman GI (2002) Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc Natl Acad Sci USA 99:10464–10469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Patel R, Kos L (2005) Endothelin-1 and neuregulin-1 convert embryonic cardiomyocytes into cells of the conduction system in the mouse. Dev Dyn 233:20–28

    Article  CAS  PubMed  Google Scholar 

  27. Zeller R, Bloch KD, Williams BS, Arceci RJ, Seidman CE (1987) Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev 1:693–698

    Article  CAS  PubMed  Google Scholar 

  28. Kubalak SW, Miller-Hance WC, O’Brien TX, Dyson E, Chien KR (1994) Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis. J Biol Chem 269:16961–16970

    CAS  PubMed  Google Scholar 

  29. Garcia-Frigola C, Shi Y, Evans SM (2003) Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns 3:777–783

    Article  CAS  PubMed  Google Scholar 

  30. Hoogaars WM, Tessari A, Moorman AF, de Boer PA, Hagoort J, Soufan AT, Campione M, Christoffels VM (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62:489–499

    Article  CAS  PubMed  Google Scholar 

  31. Christoffels VM, Smits GJ, Kispert A, Moorman AF (2010) Development of the pacemaker tissues of the heart. Circ Res 106:240–254

    Article  CAS  PubMed  Google Scholar 

  32. Baliga RR, Pimental DR, Zhao YY, Simmons WW, Marchionni MA, Sawyer DB, Kelly RA (1999) NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K), and MEK–MAPK–RSK. Am J Physiol 277:H2026–H2037

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Natural Science Foundation of China to Ming Chen (No. 81200119) and a grant from the Fundamental Research Funds for the Central Universities to Ming Chen (No. 121007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Bi, LL., Wang, ZQ. et al. Time-dependent regulation of neuregulin-1β/ErbB/ERK pathways in cardiac differentiation of mouse embryonic stem cells. Mol Cell Biochem 380, 67–72 (2013). https://doi.org/10.1007/s11010-013-1658-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1658-y

Keywords

Navigation