Skip to main content
Log in

Altered methylation of IGF2 DMR0 is associated with neural tube defects

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Neural tube defects (NTDs) are serious congenital malformation of fusion failure of the neural tube during early embryogenesis. DNA methylation disorders have been found in NTD-affected fetuses, and are correlated to the risk of NTDs. The insulin-like growth factor 2 (IGF2) gene, maternally imprinted, has a key role in fetal development. IGF2 transcription is partly controlled by differentially methylated regions (DMRs) 0 and 2. To assess whether disturbed methylation pattern increases the incidence of NTDs, we employed matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to quantify CpG methylation levels of DMR2 and 0 in fetuses with or without NTDs. We found that the methylation level of IGF2 DMR0 increased significantly in the brain tissues of NTD-affected fetuses. And hypermethylation of DMR0 was associated with an increased risk of NTDs, with an odds ratio of 5.375 (95 % CI: 1.447–19.965; p = 0.007). IGF2 mRNA expression was negatively correlated with the methylation level of DMR0 (R 2 = 0.893; p = 0.000) in HCT15 cells. These results highlights that IGF2 DMR0 hypermethylation is a potential risk factor of NTD, and IGF2 gene is a promising candidate gene to study for a greater understanding of the cause of NTDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NTDs:

Neural tube defects

IGF2 :

Insulin-like growth factor 2

DMRs:

Differentially methylated regions

MALDI-TOF MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

LINE-1:

Long interspersed nucleotide element 1

MGMT :

O6-methylguanine-DNA methyltransferase

IGF1R:

Insulin-like growth factor 1 receptor

ICR:

Imprinting control region

PCR:

Real-time polymerase chain reaction

5-Aza-CdR:

5-Aza-2′-deoxycytidine

ANOVA:

One-way analysis of variance

ORs:

Odds ratios

CIs:

Confidence intervals

AORs:

Adjusted odds ratios

SRS:

Silver–Russell syndrome

Shh:

Sonic hedgehog

References

  1. Cabrera RM, Hill DS, Etheredge AJ, Finnell RH (2004) Investigations into the etiology of neural tube defects. Birth Defects Res C Embryo Today 72:330–344

    Article  CAS  PubMed  Google Scholar 

  2. Tran S, Wang L, Le J, Guan J, Wu L, Zou J, Wang Z, Wang J, Wang F, Chen X, Cai L, Lu X, Zhao H, Guo J, Bao Y, Zheng X, Zhang T (2012) Altered methylation of the DNA repair gene MGMT is associated with neural tube defects. J Mol Neurosci 47:42–51

    Article  CAS  PubMed  Google Scholar 

  3. Wang L, Wang F, Guan J, Le J, Wu L, Zou J, Zhao H, Pei L, Zheng X, Zhang T (2010) Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. Am J Clin Nutr 91:1359–1367

    Article  CAS  PubMed  Google Scholar 

  4. Reik W, Constancia M, Dean W, Davies K, Bowden L, Murrell A, Feil R, Walter J, Kelsey G (2000) Igf2 imprinting in development and disease. Int J Dev Biol 44:145–150

    CAS  PubMed  Google Scholar 

  5. Foulstone E, Prince S, Zaccheo O, Burns JL, Harper J, Jacobs C, Church D, Hassan AB (2005) Insulin-like growth factor ligands, receptors, and binding proteins in cancer. J Pathol 205:145–153

    Article  CAS  PubMed  Google Scholar 

  6. Pollak M (2000) The question of a link between insulin-like growth factor physiology and neoplasia. Growth Horm IGF Res 10(Suppl. B):S21–S24

    Article  PubMed  Google Scholar 

  7. Daughaday WH, Rotwein P (1989) Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev 10:68–91

    Article  CAS  PubMed  Google Scholar 

  8. Sekharam M, Zhao H, Sun M, Fang Q, Zhang Q, Yuan Z, Dan HC, Boulware D, Cheng JQ, Coppola D (2003) Insulin-like growth factor 1 receptor enhances invasion and induces resistance to apoptosis of colon cancer cells through the Akt/Bcl-x(L) pathway. Cancer Res 63:7708–7716

    CAS  PubMed  Google Scholar 

  9. Baker J, Liu JP, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73–82

    Article  CAS  PubMed  Google Scholar 

  10. DeChiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80

    Article  CAS  PubMed  Google Scholar 

  11. Li M, Squire JA, Weksberg R (1998) Molecular genetics of Wiedemann–Beckwith syndrome. Am J Med Genet 79:253–259

    Article  CAS  PubMed  Google Scholar 

  12. Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, Ramos-Mejia V, Rouleau A, Yang J, Bossé M, Lajoie G, Bhatia M (2007) IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448:1015–1021

    Article  CAS  PubMed  Google Scholar 

  13. Zhong JF, Song Y, Du J, Gamache C, Burke KA, Lund BT, Weiner LP (2007) Gene regulation networks related to neural differentiation of hESC. Gene Expr 14:23–34

    Article  CAS  PubMed  Google Scholar 

  14. Fowden AL, Sibley C, Reik W, Constancia M (2006) Imprinted genes, placental development and fetal growth. Horm Res 65(Suppl 3):50–58

    Article  CAS  PubMed  Google Scholar 

  15. Liu Z, Wang Z, Li Y, Ouyang S, Chang H, Zhang T, Zheng X, Wu J (2012) Association of genomic instability, and the methylation status of imprinted genes and mismatch-repair genes, with neural tube defects. Eur J Hum Genet 20:516–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Murrell A, Ito Y, Verde G, Huddleston J, Woodfine K, Silengo MC, Spreafico F, Perotti D, De Crescenzo A, Sparago A, Cerrato F, Riccio A (2008) Distinct methylation changes at the IGF2-H19 locus in congenital growth disorders and cancer. PLoS ONE 3:e1849

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sullivan MJ, Taniguchi T, Jhee A, Kerr N, Reeve AE (1999) Relaxation of IGF2 imprinting in Wilms tumours associated with specific changes in IGF2 methylation. Oncogene 18:7527–7534

    Article  CAS  PubMed  Google Scholar 

  18. Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL, Feinberg AP (2002) Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res 62:6442–6446

    CAS  PubMed  Google Scholar 

  19. Monk D, Sanches R, Arnaud P, Apostolidou S, Hills FA, Abu-Amero S, Murrell A, Friess H, Reik W, Stanier P, Constância M, Moore GE (2006) Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human. Hum Mol Genet 15:1259–1269

    Article  CAS  PubMed  Google Scholar 

  20. Dejeux E, Olaso R, Dousset B, Audebourg A, Gut IG, Terris B, Tost J (2009) Hypermethylation of the IGF2 differentially methylated region 2 is a specific event in insulinomas leading to loss-of-imprinting and overexpression. Endocr Relat Cancer 16:939–952

    Article  CAS  PubMed  Google Scholar 

  21. Pham NV, Nguyen MT, Hu JF, Vu TH, Hoffman AR (1998) Dissociation of IGF2 and H19 imprinting in human brain. Brain Res 810:1–8

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Nong Z, Ekström C, Larsson E, Nordlinder H, Hofmann WJ, Trautwein C, Odenthal M, Dienes HP, Ekström TJ, Schirmacher P (1997) Disrupted IGF2 promoter control by silencing of promoter P1 in human hepatocellular carcinoma. Cancer Res 57:2048–2054

    CAS  PubMed  Google Scholar 

  23. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 10:1089–1093

    Article  Google Scholar 

  24. Kim YI (2005) Nutrtional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr 135:2703–2709

    CAS  PubMed  Google Scholar 

  25. Balaghi M, Wagner C (1993) DNA methylation in folate deficiency: use of CpG methylase. Biochem Biophys Res Commun 193:1184–1190

    Article  CAS  PubMed  Google Scholar 

  26. LeRoith D, Adamo M, Werner H, Roberts CT (1991) Insulin like growth factors and their receptors as growth regulators in normal physiology and pathologic states. Trends Endocrinol Metab 2:134–139

    Article  CAS  Google Scholar 

  27. Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 36:889–893

    Article  CAS  PubMed  Google Scholar 

  28. Fernandez C, Tatard VM, Bertrand N, Dahmane N (2010) Differential modulation of Sonic-hedgehog-induced cerebellar granule cell precursor proliferation by the IGF signaling network. Dev Neurosci 32:59–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ulloa F, Briscoe J (2007) Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle 6:2640–2649

    Article  CAS  PubMed  Google Scholar 

  30. Fournier-Thibault C, Blavet C, Jarov A, Bajanca F, Thorsteinsdóttir S, Duband JL (2009) Sonic hedgehog regulates integrin activity, cadherin contacts, and cell polarity to orchestrate neural tube morphogenesis. J Neurosci 29:12506–12520

    Article  CAS  PubMed  Google Scholar 

  31. Murdoch JN, Copp AJ (2010) The relationship between sonic Hedgehog signaling, cilia, and neural tube defects. Birth Defects Res A Clin Mol Teratol 88:633–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Garabedian BH, Fraser FC (1993) Upper and lower neural tube defects: an alternate hypothesis. J Med Genet 30:849–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Seller MJ (1990) Neural tube defects: are neurulation and canalization forms causally distinct? Am J Med Genet 35:394–396

    Article  CAS  PubMed  Google Scholar 

  34. Drainer E, May HM, Tolmie JL (1991) Do familial neural tube defects breed true? J Med Genet 28:605–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mariman EC, Hamel BC (1992) Sex ratios of affected and transmitting members of multiple case families with neural tube defects. J Med Genet 29:695–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Martínez Frías ML, Parralo JA, Salvador J, Frias JL (1986) Sex ratios in neural tube defects. Lancet 2:871–872

    Article  PubMed  Google Scholar 

  37. Gu X, Lin L, Zheng X, Zhang T, Song X, Wang J, Li X, Li P, Chen G, Wu J, Wu L, Liu J (2007) High prevalence of NTDs in Shanxi province: a combined epidemiological approach. Birth Defects Res A 79:702–707

    Article  CAS  Google Scholar 

  38. Murrell A, Heeson S, Bowden L, Constância M, Dean W, Kelsey G, Reik W (2001) An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep 2:1101–1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Cabaret AS, Loget P, Loeuillet L, Odent S, Poulain P (2007) Embryology of neural tube defects: information provided by associated malformations. Prenat Diagn 27:738–742

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all participating hospitals and medical staff for their implementation in sample collections and clinical information recordings, and we thank all of the women who participated, for their cooperation. This study was supported by the special research projects of health industry “infant malnutrition assessment and intervention (201002006)”, the National Natural Science Fund of China (81000249 and 81150008), the Young Scientists Research Fund of Beijing Municipal Health Bureau (2010–2012).

Conflict of interest

None of the authors has a conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingzhu Guo or Ting Zhang.

Additional information

Lihua Wu and Li Wang contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2013_1655_MOESM1_ESM.tif

Supplementary Fig. 1 Methylation level of DMR0 in HCT15 cells treated with various concentrations of 5-Aza-CdR. * p < 0.05 (TIFF 866 kb)

Supplementary material 2 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Wang, L., Shangguan, S. et al. Altered methylation of IGF2 DMR0 is associated with neural tube defects. Mol Cell Biochem 380, 33–42 (2013). https://doi.org/10.1007/s11010-013-1655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1655-1

Keywords

Navigation