Skip to main content
Log in

Substrate-specific impairment of mitochondrial respiration in permeabilized fibers from patients with coronary heart disease versus valvular disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

High-resolution respirometry of permeabilized myocardial fibers offers reliable insights concerning the integrated mitochondrial function while using small amounts of cardiac tissue. The aim of the present study was to assess the respiratory function in permeabilized fibers of human right atrial appendages harvested from patients with coronary heart disease (CHD) (n = 6) versus patients with valvular disease (n = 5) and preserved ejection fraction that underwent non-emergency cardiac surgery. Human bundle samples (1–3 mg wet weight) permeabilized with saponin were transferred into the 2 ml Oxygraph-2 k chambers to measure complex I(CI) and II (CII)-dependent respiration, respectively. The following values (expressed in pmol/s mg) were obtained for CI-dependent respiration: oxidative phosphorylation (OXPHOS), 35.65 ± 1.10 versus 42.43 ± 1.08, electron transport system (ETS), 37.87 ± 1.72 versus. 46.58 ± 1.85, and respiratory control ratio (RCR, calculated as the ratio between OXPHOS and LEAK states), 2.43 ± 0.09 versus 2.73 ± 0.068 (p < 0.05). In conclusion, in patients with CHD we showed a significant decline for the OXPHOS capacity, ETS and RCR for mitochondria energized with CI (but not with CII) substrates. These observations are suggestive for an early impairment of complex I supported respiration in ischemic heart disease, as previously demonstrated in the setting of experimental ischemia/reperfusion in several animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ et al (2012) Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220. doi:10.1161/CIR.0b013e31823ac046

    Article  PubMed  Google Scholar 

  2. Mahotra E (2012) The changing burden of valvular heart disease. BCS editorial. http://www.bcs.com/pages/news_full.asp?NewsID=1979205907. Accessed 07 Jun 2012

  3. Di Lisa F, Canton M, Menabo R, Dodoni G, Bernardi P (2003) Mitochondria and reperfusion injury. The role of permeability transition. Basic Res Cardiol 98(4):235–241

    PubMed  Google Scholar 

  4. Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL (2001) Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging and heart failure. J Mol Cell Cardiol 33:1065–1089. doi:10.1006/jmcc.2001.1378

    Article  PubMed  CAS  Google Scholar 

  5. Lemieux H, Hoppel CL (2009) Mitochondria in the human heart. J Bioenerg Biomembr 41:99–106. doi:10.1007/s10863-009-9211-0

    Article  PubMed  CAS  Google Scholar 

  6. Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–1738. doi:10.1016/j.biocel.2011.08.008

    Article  PubMed  CAS  Google Scholar 

  7. Casademont J, Miró O (2002) Electron transport chain defects in heart failure. Heart Fail Rev 7:131–139

    Article  PubMed  CAS  Google Scholar 

  8. Stanley WC, Recchia FA, Lopaschuk GD (2004) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129. doi:10.1152/physrev.00006.2004

    Article  Google Scholar 

  9. Marín-García J, Goldenthal MJ (2008) Mitochondrial centrality in heart failure. Heart Fail Rev 13:137–150. doi:10.1007/s10741-007-9079-1

    Article  PubMed  Google Scholar 

  10. Jarreta D, Orus J, Barrientos A, Miro O, Roig E, Heras M et al (2000) Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res 45:860–865. doi:10.1016/S0008-6363(99)00388-0

    Article  PubMed  CAS  Google Scholar 

  11. Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3(6):965–976. doi:10.1038/nprot.2008.61

    Article  PubMed  CAS  Google Scholar 

  12. Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA (1987) Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892:191–196. doi:10.1016/0005-2728(87)90174-5

    Article  PubMed  CAS  Google Scholar 

  13. Kuznetsov AV, Clark JF, Winkler K, Kunz WS (1996) Increase of flux control of cytochrome c oxidase in copper-deficient mottled brindled mice. J Biol Chem 271:283–288. doi:10.1074/jbc.271.1.283

    Article  PubMed  CAS  Google Scholar 

  14. Skladal D, Sperl W, Schranzhofer R, Krismer M, Gnaiger E, Margreiter R, Gellerich FN (1994) Preservation of mitochondrial functions in human skeletal muscle during storage in high energy preservation solution (HEPS). In: Gnaiger E, Gellerich FN, Wyss M (eds) What is controlling life?, vol 3., Modern Trends in BiothermokineticsInnsbruck University Press, Innsbruck, pp 268–271

    Google Scholar 

  15. Duicu O, Gheorgheosu D, Mirica N, Trancota S, Dehelean C, Fira-Mladinescu O, Muntean D (2012) High-resolution repsirometry with multiple substrates titration in permeabilized myocardial fibers. Rev Med Chir Soc Med Nat Iasi 116(1):207–213

    PubMed  Google Scholar 

  16. Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, Flemming D (2007) Patients with Type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796. doi:10.1007/s00125-007-0594-3

    Article  PubMed  CAS  Google Scholar 

  17. Aragones J, Schneider M, Van Geyte K, Fraisl P, Dresselaers T, Mazzone M et al (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genetics 40:170–180. doi:10.1038/ng.2007.62

    Article  CAS  Google Scholar 

  18. Gnaiger Erich (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. The International Journal of Biochemistry & Cell Biology 41:1837–1845. doi:10.1016/j.biocel.2009.03.013

    Article  CAS  Google Scholar 

  19. Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R (1995) Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr 27:583–596. doi:10.1007/bf02111656

    Article  PubMed  CAS  Google Scholar 

  20. Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y (eds) Mitochondrial dysfunction in drug-induced toxicity. Wiley, New Jersey, pp 327–352

    Google Scholar 

  21. Montaigne D, Marechal X, Preau S, Baccouch R, Modine T et al (2011) Doxorubicin induces mitochondrial permeability transition and contractile dysfunction in the human myocardium. Mitochondrion 11:22–26. doi:10.1016/j.mito.2010.06.001

    Article  PubMed  CAS  Google Scholar 

  22. Paradies G, Petrosillo G, Pistolese M, Di VN, Federici A, Ruggiero FM (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94:53–59. doi:10.1161/01.RES.0000109416.56608.64

    Article  PubMed  CAS  Google Scholar 

  23. Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Serena D, Ruggiero FM (1999) Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med 27:42–50. doi:10.1016/S0891-5849(99)00032-5

    Article  PubMed  CAS  Google Scholar 

  24. Petrosillo G, Ruggiero FM, Di Venosa N, Paradies G (2003) Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J 17:714–716. doi:10.1096/fj.02-0729fje

    Article  PubMed  CAS  Google Scholar 

  25. Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G (1991) Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J 122:795–801. doi:10.1016/0002-8703(91)90527-O

    Article  PubMed  CAS  Google Scholar 

  26. Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK (1991) Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338(8773):973–976. doi:10.1016/0140-6736(91)91838-L

    Article  PubMed  CAS  Google Scholar 

  27. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151. doi:10.1056/NEJMra063052

    Article  PubMed  Google Scholar 

  28. Saks VA, Belikova YO, Kuznetsov AV, Khuchua ZA, Branishte TH, Semenovsky ML et al (1991) Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy. Am J Physiol 261:30–38

    PubMed  CAS  Google Scholar 

  29. Sharov VG, Todor AV, Silverman N, Goldstein S, Sabbah HN (2000) Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol 32:2361–2367. doi:10.1006/jmcc.2000.1266

    Article  PubMed  CAS  Google Scholar 

  30. Garnier A, Zoll J, Fortin D, N’Guessan B, Lefebvre F, Geny B et al (2009) Control by circulating factors of mitochondrial function and transcription cascade in heart failure. A role for endothelin-1 and angiotensin II. Circulation 2:342–350. doi:10.1161/CIRCHEARTFAILURE.108.812099

    PubMed  CAS  Google Scholar 

  31. Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54:101–127. doi:10.1124/pr.54.1.101

    Article  PubMed  CAS  Google Scholar 

  32. Neustadt J, Pieczenik SR (2008) Medication-induced mitochondrial damage and disease. Mol Nutr Food Res 52:780–788. doi:10.1002/mnfr.200700075

    Article  PubMed  CAS  Google Scholar 

  33. Walters AM, Porter GA Jr, Brookes PS (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 111(9):1222–1236. doi:12.1161/CIRCRESAHA.112.265660

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

O.D. gratefully acknowledge the support of COST action FA0602 allowing her to gather specific skills in high-resolution respirometry through the STSM FA0602-06082. This study was supported by the HU-RO/0901/137/2.2.2 project and the PhD fellowship POSDRU 1.5/88/S/ID 63117.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danina Muntean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duicu, O., Juşcă, C., Falniţă, L. et al. Substrate-specific impairment of mitochondrial respiration in permeabilized fibers from patients with coronary heart disease versus valvular disease. Mol Cell Biochem 379, 229–234 (2013). https://doi.org/10.1007/s11010-013-1644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1644-4

Keywords

Navigation