Skip to main content
Log in

Inhibition of thyroid hormone receptor α1 impairs post-ischemic cardiac performance after myocardial infarction in mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Thyroid hormone receptor α1 (TRα1) is shown to be critical for the maturation of cardiomyocytes and for the cellular response to stress. TRα1 is altered during post ischemic cardiac remodeling but the physiological significance of this response is not fully understood. Thus, the present study explored the potential consequences of selective pharmacological inhibition of TRα1 on the mechanical performance of the post-infarcted heart. Acute myocardial infarction was induced in mice (AMI), while sham operated animals served as controls (SHAM). A group of mice was treated with debutyl-dronedarone (DBD), a selective TRα1 inhibitor (AMI–DBD). AMI resulted in low T3 levels in plasma and in down-regulation of TRα1 and TRβ1 expression. Left ventricular ejection fraction (LVEF%) was significantly reduced in AMI [33 (SEM 2.1) vs 79(2.5) in SHAM, p < 0.05] and was further declined in AMI–DBD [22(1.1) vs 33(2.1), respectively, p < 0.05]. Cardiac mass was increased in AMI but not in AMI–DBD hearts, resulting in significant increase in wall tension index. This increase in wall stress was accompanied by marked activation of p38 MAPK, a kinase that is sensitive to mechanical stretch and exerts negative inotropic effect. Furthermore, AMI resulted in β-myosin heavy chain overexpression and reduction in the ratio of SR(Ca)ATPase to phospholamban (PLB). The latter further declined in AMI–DBD mainly due to increased expression of PLB. AMI induces downregulation of thyroid hormone signaling and pharmacological inhibition of TRα1 further depresses post-ischemic cardiac function. p38 MAPK and PLB may, at least in part, be involved in this response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Groot LJ (1999) Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab 84:151–164

    Article  PubMed  Google Scholar 

  2. Friberg L, Werner S, Eggertsen G, Ahnve S (2002) Rapid down-regulation of thyroid hormones in acute myocardial infarction: is it cardioprotective in patients with angina? Arch Intern Med 162:1388–1394

    Article  PubMed  CAS  Google Scholar 

  3. Lazzeri C, Sori A, Picariello C, Chiostri M, Gensini GF, Valente S (2012) Nonthyroidal illness syndrome in ST-elevation myocardial infarction treated with mechanical revascularization. Int J Cardiol 158:103–104

    Article  PubMed  Google Scholar 

  4. Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C (2011) Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol 165:107–114

    Article  PubMed  CAS  Google Scholar 

  5. Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D, Cokkinos DV (2010) Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res 42:718–724

    Article  PubMed  CAS  Google Scholar 

  6. Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q, Gerdes AM (2008) Short term triiodo-l-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol 44:180–187

    Article  PubMed  CAS  Google Scholar 

  7. Chen YF, Pottala JV, Weltman NY, Ge X, Savinova OV, Gerdes AM (2012) Regulation of gene expression with thyroid hormone in rats with myocardial infarction. PLoS One 7:e40161

    Article  PubMed  CAS  Google Scholar 

  8. Forini F, Lionetti V, Ardehali H, Pucci A, Cecchetti F, Ghanefar M, Nicolini G, Ichikawa Y, Nannipieri M, Recchia FA, Iervasi G (2011) Early long-term L-T3 replacement rescues mitochondria and prevents ischemic cardiac remodelling in rats. J Cell Mol Med 15:514–524

    Article  PubMed  CAS  Google Scholar 

  9. Henderson KK, Danzi S, Paul JT, Leya G, Klein I, Samarel AM (2009) Physiological replacement of T3 improves left ventricular function in an animal model of myocardial infarction-induced congestive heart failure. Circ Heart Fail 2:243–252

    Article  PubMed  Google Scholar 

  10. Pantos C, Mourouzis I, Markakis K, Dimopoulos A, Xinaris C, Kokkinos AD, Panagiotou M, Cokkinos DV (2007) Thyroid hormone attenuates cardiac remodelling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32:333–339

    Article  PubMed  Google Scholar 

  11. Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318

    Article  PubMed  CAS  Google Scholar 

  12. Pantos C, Mourouzis I, Tsagoulis N, Markakis K, Galanopoulos G, Roukounakis N, Perimenis P, Liappas A, Cokkinos DV (2009) Thyroid hormone at supra-physiological dose optimizes cardiac geometry and improves cardiac function in rats with old myocardial infarction. J Physiol Pharmacol 60:49–56

    PubMed  CAS  Google Scholar 

  13. Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118:277–294

    Article  PubMed  CAS  Google Scholar 

  14. Pantos C, Xinaris C, Mourouzis I, Perimenis P, Politi E, Spanou D, Cokkinos DV (2008) Thyroid hormone receptor alpha1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol 59:253–269

    PubMed  CAS  Google Scholar 

  15. Kinugawa K, Jeong MY, Bristow MR, Long CS (2005) Thyroid hormone induces cardiac myocyte hypertrophy in a thyroid hormone receptor alpha1-specific manner that requires TAK1 and p38 mitogen-activated protein kinase. Mol Endocrinol 19:1618–1628

    Article  PubMed  CAS  Google Scholar 

  16. Belakavadi M, Saunders J, Weisleder N, Raghava PS, Fondell JD (2010) Repression of cardiac phospholamban gene expression is mediated by thyroid hormone receptor-alpha1 and involves targeted covalent histone modifications. Endocrinology 151:2946–2956

    Article  PubMed  CAS  Google Scholar 

  17. Mourouzis I, Mantzouratou P, Galanopoulos G, Kostakou E, Roukounakis N, Kokkinos AD, Cokkinos DV, Pantos C (2011) Dose-dependent effects of thyroid hormone on post-ischemic cardiac performance: potential involvement of Akt and ERK signalings. Mol Cell Biochem 363:235–243

    Article  PubMed  Google Scholar 

  18. Pantos C, Mourouzis I, Malliopoulou V, Paizis I, Tzeis S, Moraitis P, Sfakianoudis K, Varonos DD, Cokkinos DV (2005) Dronedarone administration prevents body weight gain and increases tolerance of the heart to ischemic stress: a possible involvement of thyroid hormone receptor alpha1. Thyroid 15:16–23

    Article  PubMed  CAS  Google Scholar 

  19. Van Beeren HC, Jong WM, Kaptein E, Visser TJ, Bakker O, Wiersinga WM (2003) Dronerarone acts as a selective inhibitor of 3,5,3′-triiodothyronine binding to thyroid hormone receptor-alpha1: in vitro and in vivo evidence. Endocrinology 144:552–558

    Article  PubMed  Google Scholar 

  20. van Beeren HC, Kwakkel J, Ackermans MT, Wiersinga WM, Fliers E, Boelen A (2012) Action of specific thyroid hormone receptor alpha(1) and beta(1) antagonists in the central and peripheral regulation of thyroid hormone metabolism in the rat. Thyroid 22:1275–1282

    Article  PubMed  Google Scholar 

  21. Kalofoutis C, Mourouzis I, Galanopoulos G, Dimopoulos A, Perimenis P, Spanou D, Cokkinos DV, Singh J, Pantos C (2010) Thyroid hormone can favorably remodel the diabetic myocardium after acute myocardial infarction. Mol Cell Biochem 345:161–169

    Article  PubMed  CAS  Google Scholar 

  22. Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW 2nd (1998) Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 95:10140–10145

    Article  PubMed  CAS  Google Scholar 

  23. van Empel VP, De Windt LJ (2004) Myocyte hypertrophy and apoptosis: a balancing act. Cardiovasc Res 63:487–499

    Article  PubMed  Google Scholar 

  24. Suarez J, Scott BT, Suarez-Ramirez JA, Chavira CV, Dillmann WH (2010) Thyroid hormone inhibits ERK phosphorylation in pressure overload-induced hypertrophied mouse hearts through a receptor-mediated mechanism. Am J Physiol Cell Physiol 299:C1524–C1529

    Article  PubMed  CAS  Google Scholar 

  25. Pantos C, Mourouzis I, Cokkinos DV (2011) New insights into the role of thyroid hormone in cardiac remodelling: time to reconsider? Heart Fail Rev 16:79–96

    Article  PubMed  CAS  Google Scholar 

  26. Pantos C, Mourouzis I, Cokkinos DV (2012) Thyroid hormone and cardiac repair/regeneration: from Prometheus myth to reality? Can J Physiol Pharmacol 90:977–987

    Article  PubMed  CAS  Google Scholar 

  27. Pantos C, Mourouzis I, Saranteas T, Brozou V, Galanopoulos G, Kostopanagiotou G, Cokkinos DV (2011) Acute T3 treatment protects the heart against ischemia-reperfusion injury via TRalpha1 receptor. Mol Cell Biochem 353:235–241

    Article  PubMed  CAS  Google Scholar 

  28. Pantos C, Malliopoulou V, Varonos DD, Cokkinos DV (2004) Thyroid hormone and phenotypes of cardioprotection. Basic Res Cardiol 99:101–120

    Article  PubMed  CAS  Google Scholar 

  29. Pantos C, Mourouzis I, Cokkinos DV (2010) Thyroid hormone as a therapeutic option for treating ischaemic heart disease: from early reperfusion to late remodelling. Vascul Pharmacol 52:157–165

    Article  PubMed  CAS  Google Scholar 

  30. Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H, Saffitz J, Chien K, Xiao RP, Kass DA, Wang Y (2001) The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci USA 98:12283–12288

    Article  PubMed  CAS  Google Scholar 

  31. Vahebi S, Ota A, Li M, Warren CM, de Tombe PP, Wang Y, Solaro RJ (2007) p38-MAPK induced dephosphorylation of alpha-tropomyosin is associated with depression of myocardial sarcomeric tension and ATPase activity. Circ Res 100:408–415

    Article  PubMed  CAS  Google Scholar 

  32. Aikawa R, Nagai T, Kudoh S, Zou Y, Tanaka M, Tamura M, Akazawa H, Takano H, Nagai R, Komuro I (2002) Integrins play a critical role in mechanical stress-induced p38 MAPK activation. Hypertension 39:233–238

    Article  PubMed  CAS  Google Scholar 

  33. Auger-Messier M, Accornero F, Goonasekera SA, Bueno OF, Lorenz JN, van Berlo JH, Willette RN, Molkentin JD (2012) Unrestrained p38 MAPK activation in Dusp1/4 double null mice induces cardiomyopathy. Circ Res 112(1):48–56

    Google Scholar 

  34. Tavi P, Sjogren M, Lunde PK, Zhang SJ, Abbate F, Vennstrom B, Westerblad H (2005) Impaired Ca2+ handling and contraction in cardiomyocytes from mice with a dominant negative thyroid hormone receptor alpha1. J Mol Cell Cardiol 38:655–663

    Article  PubMed  CAS  Google Scholar 

  35. Chatterjee S, Ghosh J, Lichstein E, Aikat S, Mukherjee D (2012) Meta-analysis of cardiovascular outcomes with dronedarone in patients with atrial fibrillation or heart failure. Am J Cardiol 110:607–613

    Article  PubMed  CAS  Google Scholar 

  36. Pantos C, Mourouzis I (2011) Comment: worsening heart failure in the setting of dronedarone initiation. Ann Pharmacother 45:689

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Alexander S. Onassis Foundation and M. Zobanakis.

Conflict of Interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Pantos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mourouzis, I., Kostakou, E., Galanopoulos, G. et al. Inhibition of thyroid hormone receptor α1 impairs post-ischemic cardiac performance after myocardial infarction in mice. Mol Cell Biochem 379, 97–105 (2013). https://doi.org/10.1007/s11010-013-1631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1631-9

Keywords

Navigation