Skip to main content

Advertisement

Log in

Prostaglandin E2 receptor EP1 phosphorylate CREB and mediates MMP2 expression in human cholangiocarcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cyclooxygenase-2 (COX-2) and COX-2-induced prostaglandin E2 (PGE2) have been implicated in all stages of malignant tumorigenesis. Although many aspects of matrix metalloproteinase (MMP2) on tumor invasion have been studied, the exact mechanism of PGE2-induced MMP2 overproduction has not been clearly defined. We have previously demonstrated that PGE2-enhanced extracellular signal-regulated kinase (Erk) phosphorylation via EP1 signaling pathway involved in PGE2-induced cell proliferation. Based on the identification of the transcription factor cyclic AMP response element-binding protein (CREB) as an important regulator of MMP2 and Erk phosphorylate CREB at ser133, we hypothesize that CREB may be implicated in the signaling of PGE2 stimulation to MMP2 overproduction via EP1 receptor. In the study, we investigated the role of EP1 receptor on PGE2-induced MMP2 expression and delineated the signaling pathway that contributes to EP1 receptor modulation of MMP2 in human cholangiocarcinoma cells. We found PGE2 or selective EP1 receptor agonist 17-P-T-PGE2-stimulated MMP2 expression and selective EP1 receptor antagonist SC-51322 or EP1 receptor siRNA abrogated PGE2-induced MMP2 expression. Intracellular calcium chelator BAPTA-AM, the selective inhibitor of EGFR AG1478 and the selective inhibitor of Erk PD98059 blocked EP1 receptor activation-induced CREB phosphorylation and MMP2 expression. A novel dominant-negative (D-N) inhibitor protein of the CREB, termed A-CREB, attenuated EP1 receptor activation-induced MMP2 expression. Our findings suggest that PGE2-enhanced MMP2 expression is, at least in part, mediated through EP1 receptors and calcium signaling pathway-induced CREB phosphorylation in human cholangiocarcinoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farazi PA, Zeisberg M, Glickman J, Zhang Y, Kalluri R, DePinho RA (2006) Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice. Cancer Res 66:6622–6627

    Article  PubMed  CAS  Google Scholar 

  2. Harris RE (2007) Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell Biochem 42:93–126

    Article  PubMed  Google Scholar 

  3. Rodrigues S, Bruyneel E, Rodrigue CM, Shahin E, Gespach C (2004) Cyclooxygenase 2 and carcinogenesis. Bull Cancer 91(Suppl 2):S61–S76

    Google Scholar 

  4. Kimura YN, Watari K, Fotovati A, Hosoi F, Yasumoto K, Izumi H, Kohno K, Umezawa K, Iguchi H, Shirouzu K, Takamori S, Kuwano M, Ono M (2007) Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer Sci 98(2):2009-18

    Article  PubMed  Google Scholar 

  5. Stein-Werblowsky R (1974) Prostaglandin and cancer. Oncology 30:169–176

    Article  PubMed  CAS  Google Scholar 

  6. Xue X, Shah YM (2013) Hypoxia-inducible factor-2alpha is essential in activating the COX2/mPGES-1/PGE2 signaling axis in colon cancer. Carcinogenesis 34:163–169

    Article  PubMed  CAS  Google Scholar 

  7. Ono M (2008) Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 99:1501–1506

    Article  PubMed  CAS  Google Scholar 

  8. Lu H, Ouyang W, Huang C (2006) Inflammation, a key event in cancer development. Mol Cancer Res 4:221–233

    Article  PubMed  Google Scholar 

  9. Paquette B, Therriault H, Desmarais G, Wagner R, Royer R, Bujold R (2011) Radiation-enhancement of MDA-MB-231 breast cancer cell invasion prevented by a cyclooxygenase-2 inhibitor. Br J Cancer 105:534–541

    Article  PubMed  CAS  Google Scholar 

  10. Barlow M, Edelman M, Glick RD, Steinberg BM, Soffer SZ (2012) Celecoxib inhibits invasion and metastasis via a cyclooxygenase 2-independent mechanism in an in vitro model of Ewing sarcoma. J Pediatr Surg 47:1223–1227

    Article  PubMed  Google Scholar 

  11. Singh B, Berry JA, Shoher A, Ramakrishnan V, Lucci A (2005) COX-2 overexpression increases motility and invasion of breast cancer cells. Int J Oncol 26:1393–1399

    PubMed  CAS  Google Scholar 

  12. Lu CC, Yang JS, Chiang JH, Hour MJ, Amagaya S, Lu KW, Lin JP, Tang NY, Lee TH, Chung JG (2012) Inhibition of invasion and migration by newly synthesized quinazolinone MJ-29 in human oral cancer CAL 27 cells through suppression of MMP-2/9 expression and combined down-regulation of MAPK and AKT signaling. Anticancer Res 32:2895–2903

    PubMed  CAS  Google Scholar 

  13. Di Nezza LA, Misajon A, Zhang J, Jobling T, Quinn MA, Ostor AG, Nie G, Lopata A, Salamonsen LA (2002) Presence of active gelatinases in endometrial carcinoma and correlation of matrix metalloproteinase expression with increasing tumor grade and invasion. Cancer 94:1466–1475

    Article  PubMed  Google Scholar 

  14. Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79:1193–1226

    PubMed  CAS  Google Scholar 

  15. Mantamadiotis T, Papalexis N, Dworkin S (2012) CREB signalling in neural stem/progenitor cells: recent developments and the implications for brain tumour biology. BioEssays 34:293–300

    Article  PubMed  CAS  Google Scholar 

  16. Cheng JC, Esparza S, Sandoval S, Shankar D, Fu C, Sakamoto KM (2007) Potential role of CREB as a prognostic marker in acute myeloid leukemia. Future Oncol 3:475–480

    Article  PubMed  CAS  Google Scholar 

  17. Iguchi H, Mitsui T, Ishida M, Kanba S, Arita J (2011) cAMP response element-binding protein (CREB) is required for epidermal growth factor (EGF)-induced cell proliferation and serum response element activation in neural stem cells isolated from the forebrain subventricular zone of adult mice. Endocr J 58:747–759

    Article  PubMed  CAS  Google Scholar 

  18. Zhang L, Jiang L, Sun Q, Peng T, Lou K, Liu N, Leng J (2007) Prostaglandin E2 enhances mitogen-activated protein kinase/Erk pathway in human cholangiocarcinoma cells: involvement of EP1 receptor, calcium and EGF receptors signaling. Mol Cell Biochem 305:19–26

    Article  PubMed  CAS  Google Scholar 

  19. Satpathy M, Shao M, Emerson R, Donner DB, Matei D (2009) Tissue transglutaminase regulates matrix metalloproteinase-2 in ovarian cancer by modulating cAMP-response element-binding protein activity. J Biol Chem 284:15390–15399

    Article  PubMed  CAS  Google Scholar 

  20. Melnikova VO, Mourad-Zeidan AA, Lev DC, Bar-Eli M (2006) Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. J Biol Chem 281:2911–2922

    Article  PubMed  CAS  Google Scholar 

  21. Melnikova V, Bar-Eli M (2007) Inflammation and melanoma growth and metastasis: the role of platelet-activating factor (PAF) and its receptor. Cancer Metastasis Rev 26:359–371

    Article  PubMed  CAS  Google Scholar 

  22. Han C, Michalopoulos GK, Wu T (2006) Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol 207:261–270

    Article  PubMed  CAS  Google Scholar 

  23. Eschwege P, Ferlicot S, Droupy S, Ba N, Conti M, Loric S, Coindard G, Denis I, Ferretti L, Cornelius A, Legrand A, Bedossa P, Benoit G, Jardin A, Scardino P (2003) A histopathologic investigation of PGE2 pathways as predictors of proliferation and invasion in urothelial carcinomas of the bladder. Eur Urol 44:435–441

    Article  PubMed  CAS  Google Scholar 

  24. Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD, Vinson C (1998) A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol 18:967–977

    PubMed  CAS  Google Scholar 

  25. Kim YY, Lee EJ, Kim YK, Kim SM, Park JY, Myoung H, Kim MJ (2010) Anti-cancer effects of celecoxib in head and neck carcinoma. Mol Cells 29:185–194

    Article  PubMed  CAS  Google Scholar 

  26. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501

    Article  PubMed  CAS  Google Scholar 

  27. Rundhaug JE, Simper MS, Surh I, Fischer SM (2011) The role of the EP receptors for prostaglandin E2 in skin and skin cancer. Cancer Metastasis Rev 30:465–480

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Charles Vinson (National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA) for providing the plasmid A-CREB and an empty vector CMV500. This study was supported in part by the National Natural Science Foundation of China (No. 30900583, No. 81172003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhang or Jing Leng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, B., Rong, R., Jiang, H. et al. Prostaglandin E2 receptor EP1 phosphorylate CREB and mediates MMP2 expression in human cholangiocarcinoma cells. Mol Cell Biochem 378, 195–203 (2013). https://doi.org/10.1007/s11010-013-1610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1610-1

Keywords

Navigation