Skip to main content
Log in

A lysophospholipid acyltransferase antagonist, CI-976, creates novel membrane tubules marked by intracellular phospholipase A1 KIAA0725p

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

CI-976 is a lysophospholipid acyltransferase antagonist that is known to affect secretory and endocytic membrane-trafficking pathways likely by increasing the lysophospholipid content in membranes. Our previous study suggested that lysophospholipids formed through the action of an intracellular phospholipase A1, KIAA0725p (also known as DDHD2 and iPLA1γ), may be important for the association of this enzyme with membranes. In this study, we examined the effect of CI-976 on the membrane association of KIAA0725p. While in HeLa cells KIAA0725p is localized in the Golgi and cytosol, in mouse embryonic fibroblasts (MEFs), it was found to be principally localized in the cytosol with some on post-endoplasmic reticulum compartments including the cis-Golgi. Treatment of MEFs with CI-976 induced the redistribution of KIAA0725p to membrane tubules, which were in vicinity to fragmented mitochondria. These tubules were not decorated with canonical organelle markers including Golgi proteins. A human KIAA0725p mutant, which exhibits decreased membrane-binding ability, was also redistributed to membrane structures upon CI-976 treatment. Our data suggest that the association of KIAA0725p with membranes is regulated by lipid metabolism, and that CI-976 may create unique membrane structures that can be marked by KIAA0725p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brown WJ, Chambers K, Doody A (2003) Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4:214–221

    Article  PubMed  CAS  Google Scholar 

  2. Bechler ME, de Figueiredo P, Brown WJ (2012) A PLA1-2 punch regulates the Golgi complex. Trends Cell Biol 22:116–124

    Article  PubMed  CAS  Google Scholar 

  3. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7:9–19

    Article  PubMed  CAS  Google Scholar 

  4. Woolf TF, Bjorge SM, Black AE, Holmes A, Chang T (1991) Metabolism of the acyl-CoA:cholesterol acyltransferase inhibitor 2,2-dimethyl-N-(2,4,6-trimethoxyphenyl)dodecanamide in rat and monkey. Omega-/beta-oxidation pathway. Drug Metab Dispos 19:696–702

    PubMed  CAS  Google Scholar 

  5. Drecktrah D, Chambers K, Racoosin EL, Cluett EB, Gucwa A, Jackson B, Brown WJ (2003) Inhibition of a Golgi complex lysophospholipid acyltransferase induces membrane tubule formation and retrograde trafficking. Mol Biol Cell 14:3459–3469

    Article  PubMed  CAS  Google Scholar 

  6. Chambers K, Brown WJ (2004) Characterization of a novel CI-976-sensitive lysophospholipid acyltransferase that is associated with the Golgi complex. Biochem Biophys Res Commun 313:681–686

    Article  PubMed  CAS  Google Scholar 

  7. Chambers K, Judson B, Brown WJ (2005) A unique lysophospholipid acyltransferase (LPAT) antagonist, CI-976, affects secretory and endocytic membrane trafficking pathways. J Cell Sci 118:3061–3071

    Article  PubMed  CAS  Google Scholar 

  8. Schmidt JA, Brown WJ (2009) Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function. J Cell Biol 186:211–218

    Article  PubMed  CAS  Google Scholar 

  9. Tani K, Kogure T, Inoue H (2012) The intracellular phospholipase A1 protein family. Biomol Concepts 3:471–478

    Article  Google Scholar 

  10. Nakajima K, Sonoda H, Mizoguchi T, Aoki J, Arai H, Nagahama M, Tagaya M, Tani K (2002) A novel phospholipase A1 with sequence homology to a mammalian Sec23p-interacting protein, p125. J Biol Chem 277:11329–11335

    Article  PubMed  CAS  Google Scholar 

  11. Morikawa RK, Aoki J, Kano F, Murata M, Yamamoto A, Tsujimoto M, Arai H (2009) Intracellular phospholipase A1γ (iPLA1γ) is a novel factor involved in coat protein complex I- and Rab6-independent retrograde transport between the endoplasmic reticulum and the Golgi complex. J Biol Chem 284:26620–26630

    Article  PubMed  CAS  Google Scholar 

  12. Sato S, Inoue H, Kogure T, Tagaya M, Tani K (2010) Golgi-localized KIAA0725p regulates membrane trafficking from the Golgi apparatus to the plasma membrane in mammalian cells. FEBS Lett 584:4389–4395

    Article  PubMed  CAS  Google Scholar 

  13. Inoue H, Baba T, Sato S, Ohtsuki R, Takemori A, Watanabe T, Tagaya M, Tani K (2012) Roles of SAM and DDHD domains in mammalian intracellular phospholipase A1 KIAA0725p. Biochim Biophys Acta 1823:930–939

    Article  PubMed  CAS  Google Scholar 

  14. Iinuma T, Shiga A, Nakamoto K, O’Brien MB, Aridor M, Arimitsu N, Tagaya M, Tani K (2007) Mammalian Sec16/p250 plays a role in membrane traffic from the endoplasmic reticulum. J Biol Chem 282:17632–17639

    Article  PubMed  CAS  Google Scholar 

  15. Wakana Y, Takai S, Nakajima K, Tani K, Yamamoto A, Watson P, Stephens DJ, Hauri HP, Tagaya M (2008) Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated degradation. Mol Biol Cell 19:1825–1836

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131:1715–1726

    Article  PubMed  CAS  Google Scholar 

  17. Robinson MS (1990) Cloning and expression of γ-adaptin, a component of clathrin-coated vesicles associated with the Golgi apparatus. J Cell Biol 111:2319–2326

    Article  PubMed  CAS  Google Scholar 

  18. Thyberg J, Moskalewski S (1985) Microtubules and the organization of the Golgi complex. Exp Cell Res 159:1–16

    Article  PubMed  CAS  Google Scholar 

  19. Cole NB, Sciaky N, Marotta A, Song J, Lippincott-Schwartz J (1996) Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell 7:631–650

    PubMed  CAS  Google Scholar 

  20. Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R (2011) COPII and the regulation of protein sorting in mammals. Nat Cell Biol 14:20–28

    Article  PubMed  Google Scholar 

  21. Linstedt AD, Mehta A, Suhan J, Reggio H, Hauri HP (1997) Sequence and overexpression of GPP130/GIMPc: evidence for saturable pH-sensitive targeting of a type II early Golgi membrane protein. Mol Biol Cell 8:1073–1087

    PubMed  CAS  Google Scholar 

  22. Saraste J, Svensson K (1991) Distribution of the intermediate elements operating in ER to Golgi transport. J Cell Sci 100:415–430

    PubMed  CAS  Google Scholar 

  23. Klumperman J, Schweizer A, Clausen H, Tang BL, Hong W, Oorschot V, Hauri HP (1998) The recycling pathway of protein ERGIC-53 and dynamics of the ER–Golgi intermediate compartment. J Cell Sci 111:3411–3425

    PubMed  CAS  Google Scholar 

  24. Brown WJ, Plutner H, Drecktrah D, Judson BL, Balch WE (2008) The lysophospholipid acyltransferase antagonist CI-976 inhibits a late step in COPII vesicle budding. Traffic 9:786–797

    Article  PubMed  CAS  Google Scholar 

  25. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339

    Article  PubMed  CAS  Google Scholar 

  26. Kreykenbohm V, Wenzel D, Antonin W, Atlachkine V, von Mollard GF (2002) The SNAREs vti1a and vti1b have distinct localization and SNARE complex partners. Eur J Cell Biol 81:273–280

    Article  PubMed  CAS  Google Scholar 

  27. Chen JW, Murphy TL, Willingham MC, Pastan I, August JT (1985) Identification of two lysosomal membrane glycoproteins. J Cell Biol 101:85–95

    Article  PubMed  CAS  Google Scholar 

  28. Raturi A, Simmen T (2013) Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim Biophys Acta 1833:213–224

    Article  PubMed  CAS  Google Scholar 

  29. Yamaguchi T, Yamamoto A, Furuno A, Hatsuzawa K, Tani K, Himeno M, Tagaya M (1997) Possible involvement of heterotrimeric G proteins in the organization of the Golgi apparatus. J Biol Chem 272:25260–25266

    Article  PubMed  CAS  Google Scholar 

  30. Drecktrah D, de Figueiredo P, Mason RM, Brown WJ (1998) Retrograde trafficking of both Golgi complex and TGN markers to the ER induced by nordihydroguaiaretic acid and cyclofenil diphenol. J Cell Sci 111:951–965

    PubMed  CAS  Google Scholar 

  31. Fujiwara T, Takami N, Misumi Y, Ikehara Y (1998) Nordihydroguaiaretic acid blocks protein transport in the secretory pathway causing redistribution of Golgi proteins into the endoplasmic reticulum. J Biol Chem 273:3068–3075

    Article  PubMed  CAS  Google Scholar 

  32. Fujiwara T, Misumi Y, Ikehara Y (1998) Dynamic recycling of ERGIC53 between the endoplasmic reticulum and the Golgi complex is disrupted by nordihydroguaiaretic acid. Biochem Biophys Res Commun 253:869–876

    Article  PubMed  CAS  Google Scholar 

  33. Fujiwara T, Misumi Y, Ikehara Y (2003) Direct interaction of the Golgi membrane with the endoplasmic reticulum membrane caused by nordihydroguaiaretic acid. Biochem Biophys Res Commun 301:927–933

    Article  PubMed  CAS  Google Scholar 

  34. Arasaki K, Tani K, Yoshimori T, Stephens DJ, Tagaya M (2007) Nordihydroguaiaretic acid affects multiple dynein–dynactin functions in interphase and mitotic cells. Mol Pharmacol 71:454–460

    Article  PubMed  CAS  Google Scholar 

  35. Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20:759–779

    Article  PubMed  CAS  Google Scholar 

  36. Famulski JK, Vos LJ, Rattner JB, Chan GK (2011) Dynein/dynactin-mediated transport of kinetochore components off kinetochores and onto spindle poles induced by nordihydroguaiaretic acid. PLoS ONE 6:e16494

    Article  PubMed  CAS  Google Scholar 

  37. Tirnauer JS, Bierer BE (2000) EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J Cell Biol 149:761–766

    Article  PubMed  CAS  Google Scholar 

  38. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    Article  PubMed  CAS  Google Scholar 

  39. Huang H, Frohman MA (2009) Lipid signaling on the mitochondrial surface. Biochim Biophys Acta 179:839–844

    Google Scholar 

  40. Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8:1255–1262

    Article  PubMed  CAS  Google Scholar 

  41. Huang H, Gao Q, Peng X, Choi SY, Sarma K, Ren H, Morris AJ, Frohman MA (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20:376–387

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grants-in-Aid for Scientific Research, 20570190, to KT from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. We thank Ms. Y. Mizuya for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuko Tani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba, T., Yamamoto, A., Tagaya, M. et al. A lysophospholipid acyltransferase antagonist, CI-976, creates novel membrane tubules marked by intracellular phospholipase A1 KIAA0725p. Mol Cell Biochem 376, 151–161 (2013). https://doi.org/10.1007/s11010-013-1563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1563-4

Keywords

Navigation