Skip to main content

Advertisement

Log in

Uncovering the beginning of diabetes: the cellular redox status and oxidative stress as starting players in hyperglycemic damage

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Early hyperglycemic insult can lead to permanent, cumulative damage that might be one of the earliest causes for a pre-diabetic situation. Despite this, the early phases of hyperglycemic exposure have been poorly studied. We have previously demonstrated that mitochondrial injury takes place early on upon hyperglycemic exposure. In this work, we demonstrate that just 1 h of hyperglycemic exposure is sufficient to induce increased mitochondrial membrane potential and generation. This is accompanied (and probably caused) by a decrease in the cells’ NAD+/NADH ratio. Furthermore, we show that the modulation of the activity of parallel pathways to glycolysis can alter the effects of hyperglycemic exposure. Activation of the pentose phosphate pathway leads to diminished effects of glucose on the above parameters, either by removing glucose from glycolysis or by NADPH generation. We also demonstrate that the hexosamine pathway inhibition also leads to a decreased effect of excess glucose. So, this work demonstrates the need for increased focus of study on the reductive status of the cell as one of the most important hallmarks of initial hyperglycemic damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J, Bierhaus A, Nawroth P, Hannak D, Neumaier M, Bergfeld R, Giardino I, Brownlee M (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9(3):294–299

    Article  PubMed  CAS  Google Scholar 

  2. Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212(2):167–178

    Article  PubMed  CAS  Google Scholar 

  3. Yamada K, Hara N, Shibata T, Osago H, Tsuchiya M (2006) The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Biochem 352(2):282–285

    Article  PubMed  CAS  Google Scholar 

  4. Blinova K, Carroll S, Bose S, Smirnov AV, Harvey JJ, Knutson JR, Balaban RS (2005) Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions. Biochemistry 44(7):2585–2594

    Article  PubMed  CAS  Google Scholar 

  5. Todisco S, Agrimi G, Castegna A, Palmieri F (2006) Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J Biol Chem 281(3):1524–1531

    Article  PubMed  CAS  Google Scholar 

  6. Nicholls DG, Ferguson SJ (2002) Bioenergetics 3, 1st edn. Academic Press, New York

    Google Scholar 

  7. Racker E, De LA Haba G, Leder JG (1953) Thiamine pyrophosphate, a co-enzyme of transketolase. J Am Chem Soc 75:1010–1015

    Article  CAS  Google Scholar 

  8. Koike M, Reed LJ (1960) Alpha-keto acid dehydrogenation complexes. J Biol Chem 235:2745–2756

    Google Scholar 

  9. Fernandez MA, Reed LJ, Koike M (1964) Electron microscopy and biochemical studies of pyruvate dehydrogenase complex of E. coli. Science 145:932–939

    Article  Google Scholar 

  10. Alcázar-Leyva S, Alvarado-Vásquez N (2011) Could thiamine pyrophosphate be a regulator of the nitric oxide synthesis in the endothelial cell of diabetic patients? Med Hyp 76:629–631

    Article  Google Scholar 

  11. Thornalley PJ (2005) The potential role of thiamine (vitamin B1) in diabetic complications. Curr Diab Rev 1:287–298

    Article  CAS  Google Scholar 

  12. Thornalley PJ, Babaei-Jadidi R, Al Ali H, Rabbani N, Antonysunil A, Larkin J, Ahmed A, Rayman G, Bodmer CW (2007) High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia 50:2164–2170

    Article  PubMed  CAS  Google Scholar 

  13. Song Q, Singleton CK (2002) Mitochondria from cultured cells derived from normal and thiamine-responsive megaloblastic anemia individuals efficiently import thiamine diphosphate. BMC Biochem 3:8

    Article  PubMed  Google Scholar 

  14. Johnston WL, Krizus A, Dennis JW (2006) The eggshell is required for meiotic fidelity, polar-body extrusion and polarization of the C. elegans embryo. BMC Biol 4:35

    Article  PubMed  Google Scholar 

  15. Perl A, Hanczko R, Telarico T, Oaks Z, Landas S (2011) Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol Med 17(7):395–403

    Article  PubMed  CAS  Google Scholar 

  16. Katare R, Caporali A, Emanueli C, Madeddu P (2010) Benfotiamine improves functional recovery of the infarcted heart via activation of pro-survival G6PD/Akt signaling pathway and modulation of neurohormonal response. J Mol Cell Cardiol 49(4):625–638

    Article  PubMed  CAS  Google Scholar 

  17. Xue M, Qian Q, Adaikalakoteswari A, Rabbani N, Babaei-Jadidi R, Thornalley PJ (2008) Activation of NF-E2–related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease. Diabetes 57:2809–2817

    Article  PubMed  CAS  Google Scholar 

  18. Rabbani N, Thornalley PJ (2011) Emerging role of thiamine therapy for prevention and treatment of early-stage diabetic nephropathy. Diab Obes Metab 13:577–583

    Article  CAS  Google Scholar 

  19. La SeIva M, Beltramo E, Pagnozzi F (1996) Thiamine corrects delayed replication and decreases production of lactate and advanced glycosylation end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions. Diabetologia 39:1263–1268

    Article  Google Scholar 

  20. Ascher E, Gade PV, Hingorani A, Puthukkeril S, Kallakuri S, Scheinman M, Jacob T (2001) Thiamine reverses hyperglycemia-induced dysfunction in cultured endothelial cells. Surgery 130(5):851–858

    Article  PubMed  CAS  Google Scholar 

  21. Babaei-Jadidi R, Karachalias N, Kupich C, Ahmed N, Thornalley PJ (2004) High-dose thiamine therapy counters dyslipidaemia in streptozotocin-induced diabetic rats. Diabetologia 47(12):2235–2246

    Article  PubMed  CAS  Google Scholar 

  22. Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley PJ (2010) Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia 53:1506–1516

    Article  PubMed  CAS  Google Scholar 

  23. Kohda Y, Umeki M, Kono T, Terasaki F, Matsumura H, Tanaka T (2010) Thiamine ameliorates diabetes-induced inhibition of pyruvate dehydrogenase (PDH) in rat heart mitochondria: investigating the discrepancy between PDH activity and PDH E1α phosphorylation in cardiac fibroblasts exposed to high glucose. J Pharmacol Sci 113:343–352

    Article  PubMed  CAS  Google Scholar 

  24. Tanaka T, Kono T, Terasaki F, Yasui K, Soyama A, Otsuka K, Fujita S, Yamane K, Manabe M, Usui K, Kohda Y (2010) Thiamine prevents obesity and obesity-associated metabolic disorders in OLETF rats. J Nutr Sci Vitaminol 56(6):335–346

    Article  PubMed  CAS  Google Scholar 

  25. Verma S, Reddy K, Balakumar P (2010) The defensive effect of benfotiamine in sodium arsenite-induced experimental vascular endothelial dysfunction. Biol Trace Elem Res 137:96–109

    Article  PubMed  CAS  Google Scholar 

  26. González-Ortiz M, Martínez-Abundis E, Robles-Cervantes JA, Ramírez-Ramírez V, Ramos-Zavala MG (2011) Effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in drug-naive patients with type 2 diabetes. Eur J Nutr 50:145–149

    Article  PubMed  Google Scholar 

  27. Mayevsky A, Rogatsky GG (2007) Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol Cell Physiol 292(2):C615–C640

    Article  PubMed  CAS  Google Scholar 

  28. Rolo AP, Palmeira CM, Wallace KB (2002) Mitochondrially mediated synergistic cell killing by bile acids. BBA 1637:127–132

    Google Scholar 

  29. Zhou S, Palmeira CM, Wallace KB (2001) Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 121(3):151–157

    Article  PubMed  CAS  Google Scholar 

  30. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  31. Hu FB (2011) Globalization of diabetes: the role of diet, lifestyle and genes. Diabetes Care 34:1249–1257

    Article  PubMed  Google Scholar 

  32. Nawrocki AR, Scherer PE (2004) The delicate balance between fat and muscle: adipokines in metabolic disease and musculoskeletal inflammation. Curr Opin Pharmacol 4(3):281–289

    Article  PubMed  CAS  Google Scholar 

  33. Soyal S, Krempler F, Oberkofler H, Patsch W (2006) PGC-1alpha: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia 49(7):1477–1488

    Article  PubMed  CAS  Google Scholar 

  34. Phielix E, Mensink M (2008) Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav 94(2):252–258

    Article  PubMed  CAS  Google Scholar 

  35. Loria P, Lonardo A, Anania F (2012) Liver and diabetes. A vicious circle. Hepatol Res. doi: 10.1111/j.1872-034X.2012.01031.x

  36. Snel M, Jonker JT, Schoones J, Lamb H, de Roos A, Pijl H, Smit JW, Meinders AE, Jazet IM (2012) Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. Int J Endocrinol 2012:983814

    PubMed  CAS  Google Scholar 

  37. Shoback D (2011) Greenspan’s basic and clinical endocrinology, 9th edn. In: Gardner DG (ed) Chapter 17, McGraw-Hill, New York

  38. Soboll S (1995) Regulation of energy metabolism in Liver. J Bioenerg Biomembr 27(6):571–582

    Article  PubMed  CAS  Google Scholar 

  39. Staehr P, Hother-Nielsen O, Beck-Nielsen H (2004) The role of liver in type 2 diabetes. Rev Endocr Metab Dis 5:105–110

    Article  CAS  Google Scholar 

  40. Vial G, Dubouchaud H, Leverve XM (2010) Liver mitochondria and insulin resistance. Acta Biochim Pol 57(4):384–392

    Google Scholar 

  41. Stone BE, VanThiel DH (1985) Diabetes mellitus and the liver. Sem Liver Dis 5:8–28

    Article  CAS  Google Scholar 

  42. Consoli A, Nurjhan N, Capani F, Gerich J (1989) Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38:550–557

    Article  PubMed  CAS  Google Scholar 

  43. Lin SJ, Guarente L (2003) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15(2):241–246

    Article  PubMed  CAS  Google Scholar 

  44. Bakker SJ, Heine RJ, Gans RO (1997) Thiamine may indirectly act as an antioxidant. Diabetologia 40:741–742

    PubMed  CAS  Google Scholar 

  45. Pomero F, Molinar Min A, La Selva M, Allione A, Molinatti GM, Porta M (2001) Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose. Acta Diabetol 38:135–138

    Article  PubMed  CAS  Google Scholar 

  46. Beltramo E, Berrone E, Buttiglieri S, Porta M (2004) Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose. Diabetes Metab Res Rev 20:330–336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

JST, FVD, APG, and ATV are recipients of a Fundação para a Ciência e a Tecnologia PhD scholarship (SFRH/BD/38467/2007, SFRH/BD/38372/2007, SFRH/BD/44674/2008, and SFRH/BD/44796/2008, respectively). This work received financial support from “Fundacao para a Ciencia e Tecnologia,” Portugal (Projects PTDC/QUI/72826/2006 and PTCD/QUI-BIC/103514/2008), under the frame of “Programa Operacional Tematico Factores de Competitividade (COMPTE) do Quadro Comunitario de Apoio III,” “Fundo Comunitario Europeu (FEDER),” and National funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Marques Palmeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teodoro, J.S., Gomes, A.P., Varela, A.T. et al. Uncovering the beginning of diabetes: the cellular redox status and oxidative stress as starting players in hyperglycemic damage. Mol Cell Biochem 376, 103–110 (2013). https://doi.org/10.1007/s11010-012-1555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1555-9

Keywords

Navigation