Skip to main content
Log in

Evaluation of AMCase and CHIT-1 expression in monocyte macrophages lineage

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT-1) are two active chitinases expressed in humans. The chitinase activity of AMCase was found to be causative in allergic inflammation and its expression was found to be induced by interleukin-13. CHIT1-1 is expressed by phagocytic cells and extremely high levels are seen in lysosomal storage diseases. Despite that AMCase expression in the inflammation is under investigation, little is known regarding its regulation during macrophages' full maturation and polarization. In this study, we compared AMCase and CHIT-1 modulation during monocyte to macrophage transition and polarization. Gene expression analysis was investigated by real-time PCR from mRNA of human monocytes obtained from buffy coat of healthy volunteers, from mRNA of polarized to classically activated macrophages (or M1), obtained by interferon (IFN)-γ and lipopolysaccharide (LPS) treatment, and from mRNA of alternatively activated macrophages (or M2) obtained by interleukin (IL)-4 exposure. Our results showed that the expression of AMCase and CHIT-1 were differently modulated in HMMs at different stage of maturation. The behavior of these two active chitinase suggests that in the immune response their role is complementary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393e412

    Google Scholar 

  2. Bussink AP, Speijer D, Aerts JM, Boot RG (2007) Evolution of mammalian chitinase (-like) members of family 18 glycosyl hydrolases. Genetics 177:959–970

    Article  PubMed  CAS  Google Scholar 

  3. Funkhouser JD, Aronson NN Jr (2007) Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol 7:96

    Article  PubMed  Google Scholar 

  4. Boot RG, Blommaart EF, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, Place A, Aerts JM (2001) Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem 276:6770e8

  5. Chou YT, Yao S, Czerwinski R, Fleming M, Krykbaev R, Xuan D, Zhou H, Brooks J, Fitz L, Strand J, Presman E, Lin L, Aulabaugh A, Huang X (2006) Kinetic characterization of recombinant human acidic mammalian chitinase. Biochemistry 45:4444–4454

    Article  PubMed  CAS  Google Scholar 

  6. Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, Cohn L, Hamid Q, Elias JA (2004) Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 304:1678e82

    Google Scholar 

  7. Bierbaum S, Nickel R, Koch A, Lau S, Deichmann KA, Wahn U, Superti-Furga A, Heinzmann A (2005) Polymorphisms and haplotypes of acid mammalian chitinase are associated with bronchial asthma. Am J Respir Crit Care Med 172:1505–1509

    Article  PubMed  Google Scholar 

  8. Reese TA, Liang HE, Tager AM, Luster AD, van Rooijen N, Voehringer D, Locksley RM (2007) Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447:92–96

    Article  PubMed  CAS  Google Scholar 

  9. Malaguarnera L (2006) Chitotriosidase: the yin and yang. Cell Mol Life Sci 63:3018–3029

    Article  PubMed  CAS  Google Scholar 

  10. Labadaridis I, Dimitriou E, Theodorakis M, Kafalidis G, Velegraki A, Michelakakis H (2005) Chitotriosidase in neonates with fungal and bacterial infections. Arch Dis Child Fetal Neonatal Ed 90:F531–F532

    Article  PubMed  CAS  Google Scholar 

  11. Boot RG, Renkema GH, Strijland A, van Zonneveld AJ, Aerts JM (1995) Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem 270:26252–26256

    Article  PubMed  CAS  Google Scholar 

  12. van Eijk M, Voorn-Brouwer T, Scheij SS, Verhoeven AJ, Boot RG, Aerts JM (2010) Curdlan-mediated regulation of human phagocyte-specific chitotriosidase. FEBS Lett 584:3165–3169

    Article  PubMed  Google Scholar 

  13. Boven LA, van Meurs M, Boot RG, Mehta A, Boon L, Aerts JM, Laman JD (2004) Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol 122:359–369

    Article  PubMed  CAS  Google Scholar 

  14. Brinkman J, Wijburg FA, Hollak CE, Groener JE, Verhoek M, Scheij S, Aten J, Boot RG, Aerts JM (2005) Plasma chitotriosidase and CCL18: early biochemical surrogate markers in type B Niemann-Pick disease. J Inherit Metab Dis 28:13–20

    Article  PubMed  CAS  Google Scholar 

  15. Barone R, Bertrand G, Simporè J, Malaguarnera M, Musumeci S (2001) Plasma chitotriosidase activity in beta-thalassemia major: a comparative study between Sicilian and Sardinian patients. Clin Chim Acta 306:91–96

    Article  PubMed  CAS  Google Scholar 

  16. Bargagli E, Maggiorelli C, Rottoli P (2008) Human chitotriosidase: a potential new marker of sarcoidosis severity. Respiration 76:234–238

    Article  PubMed  CAS  Google Scholar 

  17. Comabella M, Domínguez C, Rio J, Martín-Gallán P, Vilche A, Vilarrasa N, Espejo C, Montalban X (2009) Plasma chitotriosidase activity in multiple sclerosis. Clin Immunol 131:216–222

    Article  PubMed  CAS  Google Scholar 

  18. Artieda M, Cenarro A, Gañán A, Lukic A, Moreno E, Puzo J, Pocoví M, Civeira F (2007) Serum chitotriosidase activity, a marker of activated macrophages, predicts new cardiovascular events independently of C-reactive protein. Cardiology 108:297–306

    Article  PubMed  CAS  Google Scholar 

  19. Malaguarnera L, Simporè J, Prodi DA, Angius A, Sassu A, Persico I, Barone R, Musumeci S (2003) 24-bp duplication in exon 10 of human chitotriosidase gene from the sub-Saharan to the Mediterranean area: role of parasitic diseases and environmental conditions. Genes Immun 4:570–574

    Article  PubMed  CAS  Google Scholar 

  20. Palasik W, Fiszer U, Lechowicz W, Czartoryska B, Krzesiewicz M, Lugowska A (2005) Assessment of relations between clinical outcome of ischemic stroke and activity of inflammatory processes in the acute phase based on examination of selected parameters. Eur Neurol 5:188–193

    Article  Google Scholar 

  21. Di Rosa M, Dell’Ombra N, Zambito AM, Malaguarnera M, Nicoletti F, Malaguarnera L (2006) Chitotriosidase and inflammatory mediator levels in Alzheimer’s disease and cerebrovascular dementia. Eur J Neurosci 23:2648–2656

    Article  PubMed  Google Scholar 

  22. Malaguarnera L, Di Rosa M, Zambito AM, Dell’Ombra N, Di Marco R, Malaguarnera M (2006) Potential role of chitotriosidase gene in nonalcoholic fatty liver disease evolution. Am J Gastroenterol 101:2060–2069

    Article  PubMed  CAS  Google Scholar 

  23. Malaguarnera L, Di Rosa M, Zambito AM, Dell’Ombra N, Nicoletti F, Malaguarnera M (2006) Chitotriosidase gene expression in Kupffer cells from patients with non-alcoholic fatty liver disease. Gut 55:1313–1320

    Article  PubMed  CAS  Google Scholar 

  24. Ross R, Ross XL, Ghadially H, Lahr T, Schwing J, Knop J, Reske-Kunz AB (1999) Mouse langerhans cells differentially express an activated T cell attracting CC chemokine. J Invest Dermatol 113:991–998

    Article  PubMed  CAS  Google Scholar 

  25. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  PubMed  CAS  Google Scholar 

  26. Di Rosa M, Zambito AM, Marsullo AR, Li Volti G, Malaguarnera L (2009) Prolactin induces chitotriosidase expression in human macrophages through PTK, PI3-K, and MAPK pathways. J Cell Biochem 107:881–889

    Article  PubMed  Google Scholar 

  27. Cakır G, Gumus S, Ucar E, Kaya H, Tozkoparan E, Akgul EO, Karaman B, Deniz O, Kurt I, Ozkan M, Bilgic H (2012) Serum chitotriosidase activity in pulmonary tuberculosis: response to treatment and correlations with clinical parameters. Ann Lab Med 32:184–189

    Article  PubMed  Google Scholar 

  28. Bargagli E, Margollicci M, Nikiforakis N, Luddi A, Perrone A, Grosso S, Rottoli P (2007) Chitotriosidase activity in the serum of patients with sarcoidosis and pulmonary tuberculosis. Respiration 74:548–552

    Article  PubMed  CAS  Google Scholar 

  29. Iyer A, van Eijk M, Silva E, Hatta M, Faber W, Aerts JM, Das PK (2009) Increased chitotriosidase activity in serum of leprosy patients: association with bacillary leprosy. Clin Immunol 131:501–509

    Article  PubMed  CAS  Google Scholar 

  30. Malaguarnera L, Ohazuruike LN, Tsianaka C, Antic T, Di Rosa M, Malaguarnera M (2010) Human chitotriosidase polymorphism is associated with human longevity in Mediterranean nonagenarians and centenarians. J Hum Genet 55:8–12

    Article  PubMed  CAS  Google Scholar 

  31. Di Rosa M, Mangano K, De Gregorio C, Nicoletti F, Malaguarnera L (2012) Association of Chitotriosidase Genotype with the development of nonalcoholic fatty liver disease. Hepat Res. doi:10.1111/j.1872-034X.2012.01063.x

    Google Scholar 

  32. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Imm 8:958–969

    Article  CAS  Google Scholar 

  33. Zimmermann N, Mishra A, King NE, Fulkerson PC, Doepker MP, Nikolaidis NM, Kindinger LE, Moulton EA, Aronow BJ (2004) Rothenberg Transcript signatures in experimental asthma: identification of STAT6-dependent and -independent pathways. J Immunol 172:1815–1824

    PubMed  CAS  Google Scholar 

  34. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  PubMed  CAS  Google Scholar 

  35. Pourcet B, Feig JE, Vengrenyuk Y, Hobbs A, Kepka-Lenhart D, Garabedian M, Morris SM Jr, Fisher EA, Pineda-Torra I (2011) LXR{alpha} regulates macrophage arginase 1 through PU.1 and interferon regulatory factor 8. Circ Res 109:492–501

    Article  PubMed  CAS  Google Scholar 

  36. Da Silva CA, Hartl D, Liu W, Lee CG, Elias JA (2008) TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. J Immunol 181:4279–4286

    PubMed  Google Scholar 

Download references

Acknowledgments

Giulia Malaguarnera is supported by the International Ph.D. Program in Neuropharmacology (Coordinator Prof. Filippo Drago), University of Catania Medical School, Catania, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Malaguarnera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Rosa, M., De Gregorio, C., Malaguarnera, G. et al. Evaluation of AMCase and CHIT-1 expression in monocyte macrophages lineage. Mol Cell Biochem 374, 73–80 (2013). https://doi.org/10.1007/s11010-012-1506-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1506-5

Keywords

Navigation