Skip to main content

Alterations of biochemical marker levels and myonuclear numbers in rat skeletal muscle after ischemia–reperfusion

Abstract

Prolonged ischemia–reperfusion results in various damages in skeletal muscle. Following reperfusion, although the damaged muscles undergo regeneration, the precise process and mechanism of regeneration have not yet been fully understood. Here, we show the altered levels of plasma biochemical markers of muscle damage, and the change in myonuclear numbers in adult rat skeletal muscle by ischemia–reperfusion. Male Wistar rats were subjected to unilateral hindlimb ischemia by clamping the anterior tibial artery for 2 h before reperfusion. Both plasma creatine kinase activity and C-reactive protein levels in plasma were increased significantly at 0.5 h of reperfusion and returned to the control level at 24 h. The transverse sectional area of muscle belly of the anterior tibial muscles in ischemic side was significantly decreased by 20 % compared with those in sham-ischemic (control) side at 2 days, and returned to the control level at 5 days of reperfusion. Moreover, the number of interstitial nuclei in the ischemic side were significantly increased at 5–14 days and returned to the control level at 21 days of reperfusion. Central nuclei that are specifically observed in regenerating muscle, appeared at 5 days, reached a peak at 14 days, and disappeared at 28 days of reperfusion. Furthermore, MyoD, a regulatory factor for myogenesis, showed a transient expression at 5 days of reperfusion. These results indicate that, although the size of muscle seems to be recovered by 5 days of reperfusion, the most active muscle regeneration occurs much later, as shown by the increase in central nuclei.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Ohira Y, Tanaka T, Yoshinaga T, Kawano F, Nomura T, Nonaka I, Allen DL, Roy RR, Edgerton VR (2001) Ontogenetic, gravity-dependent development of rat soleus muscle. Am J Physiol Cell Physiol 280:C1008–C1016

    PubMed  CAS  Google Scholar 

  2. 2.

    Roy RR, Monke SR, Allen DL, Edgerton VR (1999) Modulation of myonuclear number in functionally overloaded and exercised plantaris fibers. J Appl Physiol 87:634–642

    PubMed  CAS  Google Scholar 

  3. 3.

    Dhalla NS, Panagia V, Singal PK, Makino N, Dixon IM, Eyolfson DA (1988) Alterations in heart membrane calcium transport during the development of ischemia–reperfusion injury. J Mol Cell Cardiol 20:3–13

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Ishiura S, Murofushi H, Suzuki K, Imahori K (1978) Studies of a calcium-activated neutral protease from chicken skeletal muscle. Purification and characterization. J Biochem 84:225–230

    PubMed  CAS  Google Scholar 

  5. 5.

    Kishimoto A, Kajikawa N, Tabuchi H, Shiota M, Nishizuka Y (1981) Calcium-dependent neutral process, widespread occurrence of a species of protease active at lower concentrations of calcium. J Biochem 90:889–892

    PubMed  CAS  Google Scholar 

  6. 6.

    Katz AM, Freston JW, Messineo FC, Herbette LG (1985) Membrane damage and the pathogenesis of cardiomyopathies. J Mol Cell Cardiol 7:11–20

    Article  Google Scholar 

  7. 7.

    Kako KJ (1986) Membrane phospholipids and plasmalogens in the ischemic myocardium. Can J Cardiol 2:184–194

    PubMed  CAS  Google Scholar 

  8. 8.

    Cruz CA, Massuda CA, Cherri J, Piccinato CE (1997) Metabolic alterations of skeletal muscle during ischemia and reperfusion. J Cardiovasc Surg 38:473–477

    Google Scholar 

  9. 9.

    Carvalho AJ, McKee NH, Green HJ (1997) Metabolic and contractile responses of fast and slow twitch rat skeletal muscles to ischemia and reperfusion. Plast Reconstr Surg 99:163–171

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Harris K, Walker PM, Mickle DAG, Harding R (1986) Metabolic response of skeletal muscle to ischemia. Am J Physiol 250:H213–H220

    PubMed  CAS  Google Scholar 

  11. 11.

    Belkin M, Brown RD, Wright JG, LaMorte WW, Hobson RW (1988) A new quantitative spectrophotometric assay of ischemia–reperfusion injury skeletal muscle. Am J Surg 156:83–86

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Chambers RL, McDermott JC (1996) Molecular basis of skeletal muscle regeneration. Can J Appl Physiol 21:155–184

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Robertson TA, Maley MAL, Grounds MD, Papadimitriou JM (1993) The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp Cell Res 207:321–331

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Grounds MD (1991) Towards understanding skeletal muscle regeneration. Pathol Res Pract 187:1–22

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Fisher BF, Rathgaber M (2006) An overview of muscle regeneration following acute injury. J Phys Ther Sci 18:57–66

    Article  Google Scholar 

  16. 16.

    Chiu D, Wang HH, Blumenthal MR (1976) Creatine phosphokinase release as a measure of tourniquet effect on skeletal muscle. Arch Surg 111:71–74

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    McDermott MM, Lloyd-Jones DM (2009) The role of biomarkers and genetics in peripheral arterial disease. J Am Coll Cardiol 54:1228–1237

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Seki T, Shimokawa N, Iizuka H, Takagishi K, Koibuchi N (2008) Abnormalities of vertebral formation and Hox expression in congenital kyphoscoliotic rats. Mol Cell Biochem 312:193–199

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Hsu YD, Chen SS, Lee WH, Lin SZ, Kao MC, Tsao WL (1995) Mitochondrial alterations of skeletal muscle in a heat stress rat model. Proc Natl Sci Counc B 19:233–239

    CAS  Google Scholar 

  20. 20.

    Komulainen J, Takala TES, Vihko V (1995) Does increased serum creatine kinase activity reflect exercise-induced muscle damage in rats? Int J Sports Med 16:150–154

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Tapscott SJ, Davis RL, Lassar AB, Weintraub H (1990) MyoD: a regulatory gene of skeletal myogenesis. Adv Exp Med Biol 280:3–6

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Bayrak S, Yurekli I, Gokalp O, Kiray M, Bademci MS, Ozcem B, Besir Y, Yilik L, Kestelli M, Gurbuz A (2012) Assessment of protective effects of methylprednisolone and pheniramine maleate on reperfusion injury in kidney after distant organ ischemia: a rat model. Ann Vasc Surg 26:559–565

    PubMed  Article  Google Scholar 

  23. 23.

    Murata I, Nozaki R, Ooi K, Ohtake K, Kimura S, Ueda H, Nakano G, Sonoda K, Inoue Y, Uchida H, Kanamoto I, Morimoto Y, Kobayashi J (2012) Nitrite reduces ischemia/reperfusion-induced muscle damage and improves survival rates in rat crush injury model. J Trauma Acute Care Surg 72:1548–1554

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Prem JT, Eppinger M, Lemmon G, Miller S, Nolan D, Peoples J (1999) The role of glutamine in skeletal muscle ischemia/reperfusion injury in the rat hind limb model. Am J Surg 178:147–150

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Santavirta S, Kauste A, Rindell K (1978) Tourniquet ischemia clinical and biochemical observation. Ann Chir Gynaecol 67:210–213

    PubMed  CAS  Google Scholar 

  26. 26.

    Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    PubMed  Article  Google Scholar 

  27. 27.

    Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288:R345–R353

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206:451–456

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Engert JC, Berglund EB, Rosenthal N (1996) Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol 135:431–440

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Wagers AJ, Conboy IM (2005) Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122:659–667

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kalderon N (1980) Muscle cell fusion. Soc Gen Physiol Ser 34:99–118

    PubMed  CAS  Google Scholar 

  33. 33.

    Best TM, Hunter KD (2000) Muscle injury and repair. Phys Med Rehabil Clin N Am 11:251–266

    PubMed  CAS  Google Scholar 

  34. 34.

    Lowe DA, Warren GL, Ingalls CP, Boorstein DB, Armstrong RB (1995) Muscle function and protein metabolism after initiation of eccentric contraction-induced injury. J Appl Physiol 79:1260–1270

    PubMed  CAS  Google Scholar 

  35. 35.

    Appell HJ, Forsburg S, Hollman W (1988) Satellite cell activation in human skeletal muscle after training evidence for muscle fiber neoformation. Int J Sports Med 9:297–299

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Sudo M, Kano Y (2009) Myofiber apoptosis occurs in the inflammation and regeneration phase following eccentric contractions in rats. J Physiol Sci 59:405–412

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Paoni NF, Peale F, Wang F, Errett-Baroncini C, Steinmetz H, Toy K, Bai W, Williams PM, Bunting S, Gerritsen ME, Powell-Braxton L (2002) Time course of skeletal muscle repair and gene expression following acute hind limb ischemia in mice. Physiol Genomics 11:263–272

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to other members of our laboratory for helpful discussions and critical comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Noriaki Shimokawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Itoh, M., Shimokawa, N., Tajika, Y. et al. Alterations of biochemical marker levels and myonuclear numbers in rat skeletal muscle after ischemia–reperfusion. Mol Cell Biochem 373, 11–18 (2013). https://doi.org/10.1007/s11010-012-1470-0

Download citation

Keywords

  • Ischemia–reperfusion
  • Skeletal muscle
  • Regeneration
  • CK
  • CRP
  • Myonucleus
  • MyoD