Skip to main content

Advertisement

Log in

Time course analysis of cardiac pacing-induced gene expression changes in the canine heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Rapid right ventricular pacing in anesthetized dogs results in marked protection against ischemia and reperfusion-induced ventricular arrhythmias, 24 h later. We have previous evidence that this protection associates with altered expression of genes, encoding proteins involved in the delayed cardioprotection. However, the sequence of transcriptional changes occurring between the pacing stimulus and the test ischemia has not yet been elucidated. Thus, we designed studies in which the expression of 29 genes was examined by real-time PCR at various time intervals, i.e., immediately (0 h), 6, 12, and 24 h after short periods (4 times 5 min) of rapid (240 beats min−1) right ventricular pacing in the canine. Sham-operated dogs (the pacing electrode was introduced but the dogs were not paced) served as controls. Compared with these dogs, pacing induced an early up-regulation of genes which encode, for example, HSP90, MnSOD, ERK1, PKCε, Bcl2, and sGC; all these somehow relate to the early phase of the protection. These genes remained either up-regulated or, after a transient lower expression (around 6 h), were up-regulated again, suggesting their involvement in the delayed protection. There were also some genes which down-regulated soon after the pacing stimulus (e.g., Bax, Casp3, Casp9, MMP9, GSK3β), and showed also low expression 24 h later. Genes encoding eNOS and iNOS, as well as Cx43 were only up-regulated 12 h after pacing. We conclude that cardiac pacing induces time-dependent changes in gene expression, and the sequence of these changes is important in the development of the delayed protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Végh Á, Szekeres L, Parratt JR (1991) Transient ischaemia induced by rapid cardiac pacing results in myocardial protection. Cardiovasc Res 25:1051–1053. doi:10.1093/cvr/25.12.1051

    Article  PubMed  Google Scholar 

  2. Kaszala K, Végh Á, Papp JGY, Parratt JR (1996) Time course of the protection against ischaemia and reperfusion induced ventricular arrhythmias resulting from brief periods of cardiac pacing. J Mol Cell Cardiol 28:2085–2095. doi:10.1006/jmcc.1996.0201

    Article  PubMed  CAS  Google Scholar 

  3. Kis A, Végh Á, Papp JG, Parratt JR (1999) Repeated cardiac pacing extends the time during which canine hearts are protected against ischaemia-induced arrhythmias: role of nitric oxide. J Mol Cell Cardiol 31:1229–1241. doi:10.1006/jmcc.1999.0955

    Article  PubMed  CAS  Google Scholar 

  4. Végh Á, Parratt JR (1996) Delayed ischaemic preconditioning induced by drugs and cardiac pacing. In: Wainwright CL, Parratt JR (eds) Myocardial preconditioning. Springer, Berlin, pp 251–260

    Google Scholar 

  5. Parratt JR, Végh Á, Kaszala K, Papp JGY (1996) Suppression of life-threatening ventricular arrhythmias by brief periods of ischaemia and by cardiac pacing with particular reference to delayed myocardial protection. In: Marber M, Yellon DM (eds) Ischaemia, preconditioning and adaptation. BIOS Scientific Publishers, Oxford, pp 85–113

    Google Scholar 

  6. Végh Á, Parratt JR (1998) Delayed preconditioning against ventricular arrhythmias. In: Baxter GF, Yellon DM (eds) Delayed preconditioning and adaptive cardioprotection. Kluwer, Dordrecht, pp 63–81

    Chapter  Google Scholar 

  7. Bolli R (2000) The late phase of preconditioning. Circ Res 87:972–983. doi:10.1161/01.RES.87.11.972

    Article  PubMed  CAS  Google Scholar 

  8. Végh Á, Szekeres L, Parratt JR (1992) Preconditioning of the ischaemic myocardium; involvement of the l-arginine–nitric oxide pathway. Br J Pharmacol 107:648–652

    Article  PubMed  Google Scholar 

  9. Végh Á, Papp JGY, Parratt JR (1994) Prevention by dexamethasone of the marked antiarrhythmic effects of preconditioning induced 20 h after rapid cardiac pacing. Br J Pharmacol 113:1081–1082

    Article  PubMed  Google Scholar 

  10. Bolli R, Manchikalapudi S, Tang XL, Takano H, Qiu Y, Guo Y, Zhang Q, Jadoon AK (1997) The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of the late phase of ischemic preconditioning. Circ Res 81:1094–1107. doi:10.1161/01.RES.81.6.1094

    Article  PubMed  CAS  Google Scholar 

  11. Jones WK, Flaherty MP, Tang X-L, Takano H, Qui Y, Banerjee S, Smith T, Bolli R (1999) Ischemic preconditioning increases iNOS transcript levels in conscious rabbits via a nitric oxide-dependent mechanism. J Mol Cell Cardiol 31:1469–1481. doi:10.1006/jmcc.1999.0983

    Article  PubMed  CAS  Google Scholar 

  12. Ónody A, Zvara A, Hackler L Jr, Vígh L, Ferdinandy P, Puskás LG (2003) Effect of classic preconditioning on the gene expression pattern of rat hearts: a DNA microarray study. FEBS Lett 536:35–40. doi:10.1016/S0014-5793(03)00006-1

    Article  PubMed  Google Scholar 

  13. Das DK, Maulik N (2006) Cardiac genomic response following preconditioning stimulus. Cardiovasc Res 70:254–263. doi:10.1016/j.cardiores.2006.02.023

    Article  PubMed  CAS  Google Scholar 

  14. Xuan Y-T, Tang X-L, Banerjee S, Takano H, Li RCX, Han H, Qiu Y, Li JJ, Bolli R (1999) Nuclear factor-κB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 84:1059–1109. doi:10.1161/01.RES.84.9.1095

    Article  Google Scholar 

  15. Gönczi M, Kovács M, Seprényi G, Végh Á (2012) The involvement of gap junctions in the delayed phase of the protection induced by cardiac pacing in dogs. Clin Sci (Lond). 123:39–51. doi:101042/CS20110501

    Article  Google Scholar 

  16. Kovács M, Papp R, Varga-Orvos Z, Ménesi D, Puskás LG, Végh A (2010) Changes in gene expression following cardiac pacing-induced delayed cardioprotection in the canine heart. Acta Biol Hung 61:434–448. doi:10.1556/ABiol.61.2010.4.7

    Article  PubMed  Google Scholar 

  17. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M (1993) Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72:1293–1299. doi:10.1161/01.RES.72.6.1293

    Article  PubMed  CAS  Google Scholar 

  18. Das DK, Engelman RM, Kimura Y (1993) Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischemia. Cardiovasc Res 27:578–584. doi:10.1093/cvr/27.4.578

    Article  PubMed  CAS  Google Scholar 

  19. Sergeev P, da Silva R, Lucchinetti E, Zaugg K, Pasch T, Schaub MC, Zaugg M (2004) Trigger-dependent gene expression profiles in cardiac preconditioning: evidence for distinct genetic programs in ischemic and anesthetic preconditioning. Anesthesiology 100:474–488

    Article  PubMed  Google Scholar 

  20. Hoshida S, Kuzuya T, Fuji H, Yamashita N, Oe H, Hori M, Suzuki K, Taniguchi N, Tada M (1993) Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol 264:H33–H39

    PubMed  CAS  Google Scholar 

  21. Tang X-L, Qiu Y, Turrens JF, Sun J-Z, Bolli R (1997) Late preconditioning against stunning is not mediated by increased antioxidant defenses in conscious pigs. Am J Physiol 273:H1631–H1657

    Google Scholar 

  22. Downey JM, Krieg T, Cohen MV (2008) Mapping preconditioning’s signalling pathways and engineering approach. Ann NY Acad Sci 1123:187–196. doi:10.1196/annals.1420.02224

    Article  PubMed  CAS  Google Scholar 

  23. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischaemia-reperfusion injury. Physiol Rev 88:581–609. doi:10.1152/physrev.00024.2007

    Article  PubMed  CAS  Google Scholar 

  24. Qui Y, Ping P, Tang X-L, Manchikalapudi S, Rizvi A, Zung J, Takano H, Wu W-J, Teschner S, Bolli R (1998) Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that ε is the isoforms involved. J Clin Invest 101:2182–2198. doi:10.1172/JCI1258

    Article  Google Scholar 

  25. Tong H, Imahashi K, Steenbergen C, Murphy E (2002) Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res 90:377–379. doi:10.1161/01.RES.0000012567.95445.55

    Article  PubMed  CAS  Google Scholar 

  26. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549. doi:10.1172/JCI19906

    PubMed  CAS  Google Scholar 

  27. Végh Á, Parratt JR (1996) Ischaemic preconditioning markedly reduces the severity of ischaemia and reperfusion-induced arrhythmias; role of endogenous myocardial protective substances. In: Wainwright CL, Parratt JR (eds) Myocardial preconditioning. Springer, Berlin, pp 35–55

    Google Scholar 

  28. Végh Á, Papp JGy, Parratt JR, Szekeres L (1992) The local intracoronary administration of methylene blue prevents the pronounced antiarrhythmic effect of ischemic preconditioning. Br J Pharmacol 107:910–911

    Article  PubMed  Google Scholar 

  29. Lochner A, Marais E, Du Toit E, Moolman J (2002) Nitric oxide triggers classic ischemic preconditioning. Ann NY Acad Sci 962:404–414. doi:10.1111/j.1749-6632.2002.tb04084.x

    Article  Google Scholar 

  30. Kodani E, Xuan YT, Takano H, Shinmura K, Tang XL, Bolli R (2002) Role of cyclic guanosine monophosphate in late preconditioning in conscious rabbits. Circulation 105:3046–3052. doi:10.1161/01.CIR.0000019408.67709.B5

    Article  PubMed  CAS  Google Scholar 

  31. Végh Á, Komori S, Szekeres L, Parratt JR (1992) Antiarrhythmic effects of preconditioning in anaesthetized dogs and rats. Cardiovasc Res 26:486–495. doi:10.1093/cvr/26.5.487

    Article  Google Scholar 

  32. Babai L, Szigeti Z, Parratt JR, Végh Á (2002) Delayed cardioprotective effects of exercise in dogs are aminoguanidine sensitive: possible involvement of nitric oxide. Clin Sci 102:435–445

    Article  PubMed  CAS  Google Scholar 

  33. Xuan Y-T, Tang X-L, Qiu Y, Banerjee S, Takano H, Han H, Bolli R (2000) Biphasic response of cardiac NO synthase isoforms to ischemic preconditioning in conscious rabbits. Am J Physiol Heart Circ Physiol 279:H2360–H2371

    PubMed  CAS  Google Scholar 

  34. Hajnal Á, Nagy O, Litvai Á, Papp JGY, Parratt JR, Végh Á (2005) Nitric oxide involvement in the delayed antiarrhythmic effect of treadmill exercise in dogs. Life Sci 77:1960–1971. doi:10.1016/j.lfs.2005.02.015

    Article  PubMed  CAS  Google Scholar 

  35. Kis A, Végh Á, Papp JGY, Parratt JR (1999) Pacing-induced delayed protection against arrhythmias is attenuated by aminoguanidine, an inhibitor of nitric oxide synthase. Br J Pharmacol 127:1545–1550

    Article  PubMed  CAS  Google Scholar 

  36. Nakamura M, Wang NP, Zhao ZQ, Wilcox JN, Thourani V, Guyton RA, Vinten-Johansen J (2000) Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart. Cardiovasc Res 45:661–670. doi:10.1016/S0008-6363(99)00393-4

    Article  PubMed  CAS  Google Scholar 

  37. Maulik N, Engelman RM, Rousou JA, Flack JE III, Deaton D, Das DK (1999) Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2. Circulation 100:11369–11375. doi:10.1161/01.CIR.100.suppl_2.II-369

    Article  Google Scholar 

  38. Baghelai K, Graham LJ, Weschler AS, Jakoi ER (1999) Cardiopulmonary support and physiology. Delayed myocardial preconditioning by α1-adrenoceptors involves inhibition of apoptosis. J Thorac Cardiovasc Surg 117:980–986

    Article  PubMed  CAS  Google Scholar 

  39. Chow AK, Schulz R (2007) Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 152:189–205. doi:10.1038/sjbjp0707344

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Erika Bakó and Irén Biczók for expert technical assistance. This study was supported by the Hungarian Scientific Research Foundation (OTKA; Project number NI61092) and by the National Development Agency (TAMOP-4.2.1/B-09/1/KONV-2010-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Végh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovács, M., Gönczi, M., Kovács, E. et al. Time course analysis of cardiac pacing-induced gene expression changes in the canine heart. Mol Cell Biochem 372, 257–266 (2013). https://doi.org/10.1007/s11010-012-1467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1467-8

Keywords

Navigation