Skip to main content
Log in

Serotonin regulates 6-phosphofructo-1-kinase activity in a PLC–PKC–CaMK II- and Janus kinase-dependent signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Serotonin (5-HT) is a hormone that has been implicated in the regulation of many physiological and pathological events. One of the most intriguing properties of this hormone is its ability to up-regulate mitosis. Moreover, 5-HT stimulates glucose uptake and up-regulates PFK activity through the 5-HT2A receptor, resulting in the phosphorylation of a tyrosine residue of PFK and the intracellular redistribution of PFK within skeletal muscle. The present study investigated some of the signaling intermediates involved in the effects of 5-HT on 6-phosphofructo-1-kinase (PFK) regulation from skeletal muscle using kinetic assessments, immunoprecipitation, and western blotting assays. Our results demonstrate that 5-HT stimulates PFK from skeletal muscle via phospholipase C (PLC). The activation of PLC in skeletal muscle leads to the recruitment of protein kinase C (PKC) and calmodulin and the stimulation of calmodulin kinase II, which associates with PFK upon 5-HT action. Alternatively, 5-HT loses its ability to up-regulate PFK activity when Janus kinase is inhibited, suggesting that 5-HT is able to control glycolytic flux in the skeletal muscle of mice by recruiting different pathways and controlling PFK activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

5-HT:

5-Hydroxytryptamine, serotonin

CaMK II:

Calcium–calmodulin-dependent protein kinase type II

f-actin:

Filamentous actin

F6P:

Fructose-6-phosphate

GLUT:

Glucose transporter

GPCRs:

G-protein-coupled receptors

KN-62:

1-[N,O-Bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine

PFK:

6-Phosphofructo-1-kinase

PI3 K:

Phosphatidylinositol-3-phosphate kinase

PKC:

Protein kinase C

PLC:

Phospholipase C

PMA:

Phorbol-12-myristate-13-acetate

References

  1. Leysen JE (2004) 5-HT2 receptors. Curr Drug Targets CNS Neurol Disord 3:11–26

    Article  PubMed  CAS  Google Scholar 

  2. Harvey JA, Quinn JL, Liu R, Aloyo VJ, Romano AG (2004) Selective remodeling of rabbit frontal cortex: relationship between 5-HT2A receptor density and associative learning. Psychopharmacology 172:435–442. doi:10.1007/s00213-003-1687-4

    Article  PubMed  CAS  Google Scholar 

  3. Aloyo VJ, Berg KA, Spampinato U, Clarke WP, Harvey JA (2009) Current status of inverse agonism at serotonin2A (5-HT2A) and 5-HT2C receptors. Pharmacol Ther 121:160–173. doi:10.1016/j.pharmthera.2008.10.010

    Article  PubMed  CAS  Google Scholar 

  4. Roth BL, Willins DL, Kristiansen K, Kroeze WK (1998) 5-Hydroxytryptamine2-family receptors (5-hydroxytryptamine2A, 5-hydroxytryptamine2B, 5-hydroxytryptamine2C): where structure meets function. Pharmacol Ther 79:231–257

    Article  PubMed  CAS  Google Scholar 

  5. Cook EH Jr, Fletcher KE, Wainwright M, Marks N, Yan SY, Leventhal BL (1994) Primary structure of the human platelet serotonin 5-HT2A receptor: identify with frontal cortex serotonin 5-HT2A receptor. J Neurochem 63:465–469

    Article  PubMed  CAS  Google Scholar 

  6. Hajduch E, Rencurel F, Balendran A, Batty IH, Downes CP, Hundal HS (1999) Serotonin (5-hydroxytryptamine), a novel regulator of glucose transport in rat skeletal muscle. J Biol Chem 274:13563–13568

    Article  PubMed  CAS  Google Scholar 

  7. Hajduch E, Dombrowski L, Darakhshan F, Rencurel F, Marette A, Hundal HS (1999) Biochemical localisation of the 5-HT2A (serotonin) receptor in rat skeletal muscle. Biochem Biophys Res Commun 257:369–372

    Article  PubMed  CAS  Google Scholar 

  8. Assouline-Cohen M, Ben-Porat H, Beitner R (1998) Activation of membrane skeleton-bound phosphofructokinase in erythrocytes induced by serotonin. Mol Genet Metab 63:235–238

    Article  PubMed  CAS  Google Scholar 

  9. Nebigil CG, Garnovskaya MN, Spurney RF, Raymond JR (1995) Identification of a rat glomerular mesangial cell mitogenic 5-HT2A receptor. Am J Physiol 268:F122–F127

    PubMed  CAS  Google Scholar 

  10. Guillet-Deniau I, Burnol AF, Girard J (1997) Identification and localization of a skeletal muscle secrotonin 5-HT2A receptor coupled to the Jak/STAT pathway. J Biol Chem 272:14825–14829

    Article  PubMed  CAS  Google Scholar 

  11. Banes AK, Shaw SM, Tawfik A, Patel BP, Ogbi S, Fulton D, Marrero MB (2005) Activation of the JAK/STAT pathway in vascular smooth muscle by serotonin. Am J Physiol Cell Physiol 288:C805–C812. doi:10.1152/ajpcell.00385.2004

    Article  PubMed  CAS  Google Scholar 

  12. Azmitia EC (2001) Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res Bull 56:413–424

    Article  PubMed  CAS  Google Scholar 

  13. Sola-Penna M, Da Silva D, Coelho WS, Marinho-Carvalho MM, Zancan P (2010) Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism. IUBMB Life 62:791–796. doi:10.1002/iub.393

    Article  PubMed  CAS  Google Scholar 

  14. Coelho WS, Costa KC, Sola-Penna M (2007) Serotonin stimulates mouse skeletal muscle 6-phosphofructo-1-kinase through tyrosine-phosphorylation of the enzyme altering its intracellular localization. Mol Genet Metab 92:364–370

    Article  PubMed  CAS  Google Scholar 

  15. Coelho WS, Da Silva D, Marinho-Carvalho MM, Sola-Penna M (2012) Serotonin modulates hepatic 6-phosphofructo-1-kinase in an insulin synergistic manner. Int J Biochem Cell Biol 44:150–157. doi:10.1016/j.biocel.2011.10.010

    Article  PubMed  CAS  Google Scholar 

  16. Luther MA, Lee JC (1986) The role of phosphorylation in the interaction of rabbit muscle phosphofructokinase with F-actin. J Biol Chem 261:1753–1759

    PubMed  CAS  Google Scholar 

  17. Kuo HJ, Malencik DA, Liou RS, Anderson SR (1986) Factors affecting the activation of rabbit muscle phosphofructokinase by actin. Biochemistry 25:1278–1286

    Article  PubMed  CAS  Google Scholar 

  18. Alves GG, Sola-Penna M (2003) Epinephrine modulates cellular distribution of muscle phosphofructokinase. Mol Genet Metab 78:302–306

    Article  Google Scholar 

  19. Silva AP, Alves GG, Araujo AH, Sola-Penna M (2004) Effects of insulin and actin on phosphofructokinase activity and cellular distribution in skeletal muscle. An Acad Bras Cienc 76:541–548

    Article  PubMed  CAS  Google Scholar 

  20. Zancan P, Sola-Penna M (2005) Calcium influx: a possible role for insulin modulation of intracellular distribution and activity of 6-phosphofructo-1-kinase in human erythrocytes. Mol Genet Metab 86:392–400

    Article  PubMed  CAS  Google Scholar 

  21. Zancan P, Sola-Penna M (2005) Regulation of human erythrocyte metabolism by insulin: cellular distribution of 6-phosphofructo-1-kinase and its implication for red blood cell function. Mol Genet Metab 86:401–411

    Article  PubMed  CAS  Google Scholar 

  22. Real-Hohn A, Zancan P, Da Silva D, Martins ER, Salgado LT, Mermelstein CS, Gomes AM, Sola-Penna M (2010) Filamentous actin and its associated binding proteins are the stimulatory site for 6-phosphofructo-1-kinase association within the membrane of human erythrocytes. Biochimie 92:538–544. doi:10.1016/j.biochi.2010.01.023

    Article  PubMed  CAS  Google Scholar 

  23. Maia JCC, Gomes SL, Juliani MH, Morel CM (1983) Preparation of [γ-32 P] and [α-32 P]-nucleoside triphosphate, with high specific activity. In: Morel CM (ed) Genes and antigenes of parasites: a laboratory manual. FIOCRUZ, Rio de Janeiro, pp 146–157

    Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  25. Sola-Penna M, dos Santos AC, Alves GG, El-Bacha T, Faber-Barata J, Pereira MF, Serejo FC, Da Poian AT, Sorenson M (2002) A radioassay for phosphofructokinase-1 activity in cell extracts and purified enzyme. J Biochem Biophys Methods 50:129–140

    Article  PubMed  CAS  Google Scholar 

  26. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  27. Conn PJ, Sanders-Bush E, Hoffman BJ, Hartig PR (1986) A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc Natl Acad Sci USA 83:4086–4088

    Article  PubMed  CAS  Google Scholar 

  28. Lam DD, Heisler LK (2007) Serotonin and energy balance: molecular mechanisms and implications for type 2 diabetes. Expert Rev Mol Med 9:1–24. doi:10.1017/S1462399407000245

    Article  PubMed  Google Scholar 

  29. Smrcka AV, Brown JH, Holz GG (2012) Role of phospholipase cepsilon in physiological phosphoinositide signaling networks. Cell Signal 24:1333–1343. doi:10.1016/j.cellsig.2012.01.009

    Article  PubMed  CAS  Google Scholar 

  30. Ferris CD, Snyder SH (1992) IP3 receptors: ligand-activated calcium channels in multiple forms. Adv Second Messenger Phosphoprot Res 26:95–107

    CAS  Google Scholar 

  31. Marinho-Carvalho MM, Costa-Mattos PV, Spitz GA, Zancan P, Sola-Penna M (2009) Calmodulin upregulates skeletal muscle 6-phosphofructo-1-kinase reversing the inhibitory effects of allosteric modulators. Biochim et Biophys Acta 1794:1175–1180

    Article  CAS  Google Scholar 

  32. Marinho-Carvalho MM, Zancan P, Sola-Penna M (2006) Modulation of 6-phosphofructo-1-kinase oligomeric equilibrium by calmodulin: formation of active dimers. Mol Genet Metab 87:253–261

    Article  PubMed  CAS  Google Scholar 

  33. Zancan P, Rosas AO, Marcondes MC, Marinho-Carvalho MM, Sola-Penna M (2007) Clotrimazole inhibits and modulates heterologous association of the key glycolytic enzyme 6-phosphofructo-1-kinase. Biochem Pharmacol 73:1520–1527

    Article  PubMed  CAS  Google Scholar 

  34. Mahrenholz AM, Lan L, Mansour TE (1991) Phosphorylation of heart phosphofructokinase by Ca2+/calmodulin protein kinase. Biochem Biophys Res Commun 174:1255–1259. doi:10.1016/0006-291X(91)91556-R

    Article  PubMed  CAS  Google Scholar 

  35. Oufkir T, Arseneault M, Sanderson JT, Vaillancourt C (2010) The 5-HT 2A serotonin receptor enhances cell viability, affects cell cycle progression and activates MEK-ERK1/2 and JAK2-STAT3 signalling pathways in human choriocarcinoma cell lines. Placenta 31:439–447. doi:10.1016/j.placenta.2010.02.019

    Article  PubMed  CAS  Google Scholar 

  36. Rane SG, Reddy EP (2000) Janus kinases: components of multiple signaling pathways. Oncogene 19:5662–5679. doi:10.1038/sj.onc.1203925

    Article  PubMed  CAS  Google Scholar 

  37. Guillausseau PJ, Meas T, Virally M, Laloi-Michelin M, MÈdeau V, Kevorkian JP (2008) Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab 34:S43–S48

    Article  PubMed  CAS  Google Scholar 

  38. Coelho RG, Calaça IdC, Celestrini DdM, Correia AH, Costa MASM, Sola-Penna M (2011) Clotrimazole disrupts glycolysis in human breast cancer without affecting non-tumoral tissues. Mol Genet Metab 103:394–398. doi:10.1016/j.ymgme.2011.04.003

    Article  PubMed  CAS  Google Scholar 

  39. Da Silva D, Zancan P, Coelho WS, Gomez LS, Sola-Penna M (2010) Metformin reverses hexokinase and 6-phosphofructo-1-kinase inhibition in skeletal muscle, liver and adipose tissues from streptozotocin-induced diabetic mouse. Arch Biochem Biophys 496:53–60. doi:10.1016/j.abb.2010.01.013

    Article  PubMed  Google Scholar 

  40. El-Bacha T, de Freitas MS, Sola-Penna M (2003) Cellular distribution of phosphofructokinase activity and implications to metabolic regulation in human breast cancer. Mol Genet Metab 79:294–299

    Article  PubMed  CAS  Google Scholar 

  41. Grechi J, Marinho-Carvalho M, Zancan P, Cinelli LP, Gomes AMO, Rodrigues ML, Nimrichter L, Sola-Penna M (2011) Glucuronoxylomannan from Cryptococcus neoformans down-regulates the enzyme 6-phosphofructo-1-kinase of macrophages. J Biol Chem 286:14820–14829. doi:10.1074/jbc.M110.177030

    Article  PubMed  CAS  Google Scholar 

  42. Leite TC, Coelho RG, Silva DD, Coelho WS, Marinho-Carvalho MM, Sola-Penna M (2011) Lactate downregulates the glycolytic enzymes hexokinase and phosphofructokinase in diverse tissues from mice. FEBS Lett 585:92–98. doi:10.1016/j.febslet.2010.11.009

    Article  PubMed  CAS  Google Scholar 

  43. Leite TC, Da Silva D, Coelho RG, Zancan P, Sola-Penna M (2007) Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis. Biochem J 408:123–130

    Article  Google Scholar 

  44. Meira DD, Marinho-Carvalho MM, Teixeira CA, Veiga VF, Da Poian AT, Holandino C, de Freitas MS, Sola-Penna M (2005) Clotrimazole decreases human breast cancer cells viability through alterations in cytoskeleton-associated glycolytic enzymes. Mol Genet Metab 84:354–362

    Article  PubMed  CAS  Google Scholar 

  45. Spitz GA, Furtado CM, Sola-Penna M, Zancan P (2009) Acetylsalicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure and activity. Biochem Pharmacol 77:46–53

    Article  PubMed  CAS  Google Scholar 

  46. Michaelidis B, Rofalikou E, Beis I (1993) The effect of serotonin (5-hydroxytryptamine) on glycolysis in the perfused ventricle of the fresh-water bivalve Anodonta cygnea: evidence for phosphorylation dephosphorylation control of phosphofructokinase. J Exp Biol 180:15–25

    CAS  Google Scholar 

  47. Shum JK, Melendez JA, Jeffrey JJ (2002) Serotonin-induced MMP-13 production is mediated via phospholipase C, protein kinase C, and ERK1/2 in rat uterine smooth muscle cells. J Biol Chem 277:42830–42840. doi:10.1074/jbc.M205094200

    Article  PubMed  CAS  Google Scholar 

  48. Oestreich EA, Malik S, Goonasekera SA, Blaxall BC, Kelley GG, Dirksen RT, Smrcka AV (2009) Epac and phospholipase cepsilon regulate Ca2+ release in the heart by activation of protein kinase cepsilon and calcium–calmodulin kinase II. J Biol Chem 284:1514–1522. doi:10.1074/jbc.M806994200

    Article  PubMed  CAS  Google Scholar 

  49. Maier LS, Bers DM (2007) Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc Res 73:631–640. doi:10.1016/j.cardiores.2006.11.005

    Article  PubMed  CAS  Google Scholar 

  50. Ase AR, Raouf R, Belanger D, Hamel E, Seguela P (2005) Potentiation of P2X1 ATP-gated currents by 5-hydroxytryptamine 2A receptors involves diacylglycerol-dependent kinases and intracellular calcium. J Pharmacol Exp Ther 315:144–154. doi:10.1124/jpet.105.089045

    Article  PubMed  CAS  Google Scholar 

  51. Seager JM, Murphy TV, Garland CJ (1994) Importance of inositol (1,4,5)-trisphosphate, intracellular Ca2+ release and myofilament Ca2+ sensitization in 5-hydroxytryptamine-evoked contraction of rabbit mesenteric artery. Br J Pharmacol 111:525–532

    Article  PubMed  CAS  Google Scholar 

  52. Cohen ML, Wittenauer LA (1987) Serotonin receptor activation of phosphoinositide turnover in uterine, fundal, vascular, and tracheal smooth muscle. J Cardiovasc Pharmacol 10:176–181

    Article  PubMed  CAS  Google Scholar 

  53. Nakaki T, Roth BL, Chuang DM, Costa E (1985) Phasic and tonic components in 5-HT2 receptor-mediated rat aorta contraction: participation of Ca++ channels and phospholipase C. J Pharmacol Exp Ther 234:442–446

    PubMed  CAS  Google Scholar 

  54. Roth BL, Nakaki T, Chuang DM, Costa E (1986) 5-Hydroxytryptamine2 receptors coupled to phospholipase C in rat aorta: modulation of phosphoinositide turnover by phorbol ester. J Pharmacol Exp Ther 238:480–485

    PubMed  CAS  Google Scholar 

  55. Chen-Zion M, Lilling G, Beitner R (1993) The dual effects of Ca2+ on binding of the glycolytic enzymes, phosphofructokinase and aldolase, to muscle cytoskeleton. Biochem Med Metab Biol 49:173–181

    Article  PubMed  CAS  Google Scholar 

  56. Ashkenazy-Shahar M, Beitner R (1999) Effects of Ca2+-ionophore A23187 and calmodulin antagonists on regulatory mechanisms of glycolysis and cell viability of NIH-3T3 fibroblasts. Mol Genet Metab 67:334–342. doi:10.1006/mgme.1999.2877

    Article  PubMed  CAS  Google Scholar 

  57. Assouline-Cohen M, Beitner R (1999) Effects of Ca2+ on erythrocyte membrane skeleton-bound phosphofructokinase, ATP levels, and hemolysis. Mol Genet Metab 66:56–61. doi:10.1006/mgme.1998.2773

    Article  PubMed  CAS  Google Scholar 

  58. Orosz F, Christova TY, Ovadi J (1988) Functional in vitro test of calmodulin antagonism: effect of drugs on interaction between calmodulin and glycolytic enzymes. Mol Pharmacol 33:678–682

    PubMed  CAS  Google Scholar 

  59. Orosz F, Kovacs J, Low P, Vertessy BG, Urbanyi Z, Acs T, Keve T, Ovadi J (1997) Interaction of a new bis-indol derivative, KAR-2 with tubulin and its antimitotic activity. Br J Pharmacol 121:947–954

    Article  PubMed  CAS  Google Scholar 

  60. Beitner R (1998) Calmodulin antagonists and cell energy metabolism in health and disease. Mol Genet Metab 64:161–168

    Article  PubMed  CAS  Google Scholar 

  61. Glass-Marmor L, Beitner R (1997) Detachment of glycolytic enzymes from cytoskeleton of melanoma cells induced by calmodulin antagonists. Eur J Pharmacol 328:241–248

    Article  PubMed  CAS  Google Scholar 

  62. Lilling G, Beitner R (1990) Decrease in cytoskeleton-bound phosphofructokinase in muscle induced by high intracellular calcium, serotonin and phospholipase A2 in vivo. Int J Biochem 22:857–863

    Article  PubMed  CAS  Google Scholar 

  63. Livnat T, Chen-Zion M, Beitner R (1993) Stimulatory effect of epidermal growth factor on binding of glycolytic enzymes to muscles cytoskeleton and the antagonistic action of calmodulin inhibitors. Biochem Med Metab Biol 50:24–34

    Article  PubMed  CAS  Google Scholar 

  64. Penso J, Beitner R (2002) Detachment of glycolytic enzymes from cytoskeleton of Lewis lung carcinoma and colon adenocarcinoma cells induced by clotrimazole and its correlation to cell viability and morphology. Mol Genet Metab 76:181–188

    Article  PubMed  CAS  Google Scholar 

  65. Penso J, Beitner R (2002) Clotrimazole decreases glycolysis and the viability of lung carcinoma and colon adenocarcinoma cells. Eur J Pharmacol 451:227–235

    Article  PubMed  CAS  Google Scholar 

  66. Furtado CM, Marcondes MC, Sola-Penna M, de Souza ML, Zancan P (2012) Clotrimazole preferentially inhibits human breast cancer cell proliferation, viability and glycolysis. PLoS One 7:e30462. doi:10.1371/journal.pone.0030462

    Article  PubMed  CAS  Google Scholar 

  67. Sola-Penna M (2008) Metabolic regulation by lactate. IUBMB Life 60:605–608

    Article  PubMed  CAS  Google Scholar 

  68. Marcondes MC, Sola-Penna M, RdSG Torres, Zancan P (2011) Muscle-type 6-phosphofructo-1-kinase and aldolase associate conferring catalytic advantages for both enzymes. IUBMB Life 63:435–445. doi:10.1002/iub.464

    Article  PubMed  CAS  Google Scholar 

  69. Marcondes MC, Sola-Penna M, Zancan P (2010) Clotrimazole potentiates the inhibitory effects of ATP on the key glycolytic enzyme 6-phosphofructo-1-kinase. Arch Biochem Biophys 497:62–67. doi:10.1016/j.abb.2010.03.013

    Article  PubMed  CAS  Google Scholar 

  70. McKune CM, Watts SW (2001) Characterization of the serotonin receptor mediating contraction in the mouse thoracic aorta and signal pathway coupling. J Pharmacol Exp Ther 297:88–95

    PubMed  CAS  Google Scholar 

  71. Ogden K, Thompson JM, Hickner Z, Huang T, Tang DD, Watts SW (2006) A new signaling paradigm for serotonin: use of Crk-associated substrate in arterial contraction. Am J Physiol Heart Circ Physiol 291:H2857–H2863. doi:10.1152/ajpheart.00229.2006

    Article  PubMed  CAS  Google Scholar 

  72. Honda H, Oda H, Nakamoto T, Honda Z, Sakai R, Suzuki T, Saito T, Nakamura K, Nakao K, Ishikawa T, Katsuki M, Yazaki Y, Hirai H (1998) Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Nat Genet 19:361–365. doi:10.1038/1246

    Article  PubMed  CAS  Google Scholar 

  73. Tang DD, Tan J (2003) Role of Crk-associated substrate in the regulation of vascular smooth muscle contraction. Hypertension 42:858–863. doi:10.1161/01.HYP.0000085333.76141.33

    Article  PubMed  CAS  Google Scholar 

  74. Tang DD, Tan J (2003) Downregulation of profilin with antisense oligodeoxynucleotides inhibits force development during stimulation of smooth muscle. Am J Physiol Heart Circ Physiol 285:H1528–H1536. doi:10.1152/ajpheart.00188.2003

    PubMed  CAS  Google Scholar 

  75. Lu R, Alioua A, Kumar Y, Kundu P, Eghbali M, Weisstaub NV, Gingrich JA, Stefani E, Toro L (2008) c-Src tyrosine kinase, a critical component for 5-HT2A receptor-mediated contraction in rat aorta. J Physiol 586:3855–3869. doi:10.1113/jphysiol.2008.153593

    Article  PubMed  CAS  Google Scholar 

  76. Quinn JC, Johnson-Farley NN, Yoon J, Cowen DS (2002) Activation of extracellular-regulated kinase by 5-hydroxytryptamine(2A) receptors in PC12 cells is protein kinase C-independent and requires calmodulin and tyrosine kinases. J Pharmacol Exp Ther 303:746–752. doi:10.1124/jpet.102.038083

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Programa de Oncobiologia) and Programa de Núcleos de Excelência (PRONEX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Sola-Penna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coelho, W.S., Sola-Penna, M. Serotonin regulates 6-phosphofructo-1-kinase activity in a PLC–PKC–CaMK II- and Janus kinase-dependent signaling pathway. Mol Cell Biochem 372, 211–220 (2013). https://doi.org/10.1007/s11010-012-1462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1462-0

Keywords

Navigation