Skip to main content

Advertisement

Log in

Selective integrin subunit reduction disrupts fibronectin extracellular matrix deposition and fibrillin 1 gene expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Integrins are transmembrane receptors that can specifically bind extracellular matrix (ECM) proteins. Assembly of the ECM protein fibronectin into fibrils has been shown to be a cell-mediated process that requires integrins. Like fibronectin, fibrillin 1 is an ECM glycoprotein that can assemble into fibrils, but the role of integrins in fibril formation is not understood. To investigate the role of integrins in fibrillin 1 ECM deposition, cells that normally produce and assemble fibrillin 1 fibers in vitro were stably transfected with plasmid constructs encoding short interfering RNAs that target specific integrin subunits. Cells that were deficient in α2- and β3-integrin subunits produced and deposited fibronectin normally, but cells that were deficient for α5 and αV were unable to elaborate a fibronectin matrix, although they continued to produce and secrete the protein. Surprisingly, the cells that were unable to elaborate a fibronectin matrix also lost fibrillin 1 gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miyahara M, Njieha FK, Prockop DJ (1982) Formation of collagen fibrils in vitro by cleavage of procollagen with procollagen proteinases. J Biol Chem 257(14):8442–8448

    PubMed  CAS  Google Scholar 

  2. Zhang G, Young BB, Ezura Y, Favata M, Soslowsky LJ, Chakravarti S, Birk DE (2005) Development of tendon structure and function: regulation of collagen fibrillogenesis. J Musculoskelet Neuronal Interact 5(1):5–21

    PubMed  CAS  Google Scholar 

  3. Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24(6):389–399. doi:10.1016/j.matbio.2005.06.008

    Article  PubMed  CAS  Google Scholar 

  4. Singh P, Carraher C, Schwarzbauer JE (2010) Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol 26:397–419. doi:10.1146/annurev-cellbio-100109-104020

    Article  PubMed  CAS  Google Scholar 

  5. Ginsberg MH, Partridge A, Shattil SJ (2005) Integrin regulation. Curr Opin Cell Biol 17(5):509–516. doi:10.1016/j.ceb.2005.08.010

    Article  PubMed  CAS  Google Scholar 

  6. DeMali KA, Wennerberg K, Burridge K (2003) Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol 15(5):572–582

    Article  PubMed  CAS  Google Scholar 

  7. Mariko B, Ghandour Z, Raveaud S, Quentin M, Usson Y, Verdetti J, Huber P, Kielty C, Faury G (2010) Microfibrils and fibrillin-1 induce integrin-mediated signaling, proliferation and migration in human endothelial cells. Am J Physiol Cell Physiol 299(5):C977–C987. doi:10.1152/ajpcell.00377.2009

    Article  PubMed  CAS  Google Scholar 

  8. Piha-Gossack A, Sossin W, Reinhardt DP (2012) The evolution of extracellular fibrillins and their functional domains. PLoS One 7(3):e33560. doi:10.1371/journal.pone.0033560

    Article  PubMed  CAS  Google Scholar 

  9. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777. doi:10.1146/annurev.biochem.68.1.729

    Article  PubMed  CAS  Google Scholar 

  10. Ritty TM, Broekelmann TJ, Werneck CC, Mecham RP (2003) Fibrillin-1 and -2 contain heparin-binding sites important for matrix deposition and that support cell attachment. Biochem J 375(Pt 2):425–432. doi:10.1042/BJ20030649

    Article  PubMed  CAS  Google Scholar 

  11. Tiedemann K, Batge B, Muller PK, Reinhardt DP (2001) Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem 276(38):36035–36042. doi:10.1074/jbc.M104985200

    Article  PubMed  CAS  Google Scholar 

  12. Parsi MK, Adams JR, Whitelock J, Gibson MA (2010) LTBP-2 has multiple heparin/heparan sulfate binding sites. Matrix Biol 29(5):393–401. doi:10.1016/j.matbio.2010.03.005

    Article  PubMed  CAS  Google Scholar 

  13. Pfaff M, Reinhardt DP, Sakai LY, Timpl R (1996) Cell adhesion and integrin binding to recombinant human fibrillin-1. FEBS Lett 384(3):247–250

    Article  PubMed  CAS  Google Scholar 

  14. Sakamoto H, Broekelmann T, Cheresh DA, Ramirez F, Rosenbloom J, Mecham RP (1996) Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1. J Biol Chem 271(9):4916–4922

    Article  PubMed  CAS  Google Scholar 

  15. D’Arrigo C, Burl S, Withers AP, Dobson H, Black C, Boxer M (1998) TGF-beta1 binding protein-like modules of fibrillin-1 and -2 mediate integrin-dependent cell adhesion. Connect Tissue Res 37(1–2):29–51

    Article  PubMed  Google Scholar 

  16. Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ, Kielty CM (2003) Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J Biol Chem 278(36):34605–34616. doi:10.1074/jbc.M303159200

    Article  PubMed  CAS  Google Scholar 

  17. Lee SS, Knott V, Jovanovic J, Harlos K, Grimes JM, Choulier L, Mardon HJ, Stuart DI, Handford PA (2004) Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure 12(4):717–729. doi:10.1016/j.str.2004.02.023

    Article  PubMed  CAS  Google Scholar 

  18. Bouzeghrane F, Reinhardt DP, Reudelhuber TL, Thibault G (2005) Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis. Am J Physiol Heart Circ Physiol 289(3):H982–H991. doi:10.1152/ajpheart.00151.2005

    Article  PubMed  CAS  Google Scholar 

  19. Jovanovic J, Takagi J, Choulier L, Abrescia NG, Stuart DI, van der Merwe PA, Mardon HJ, Handford PA (2007) alphaVbeta6 is a novel receptor for human fibrillin-1. Comparative studies of molecular determinants underlying integrin-rgd affinity and specificity. J Biol Chem 282(9):6743–6751. doi:10.1074/jbc.M607008200

    Article  PubMed  CAS  Google Scholar 

  20. Tsuruga E, Sato A, Ueki T, Nakashima K, Nakatomi Y, Ishikawa H, Yajima T, Sawa Y (2009) Integrin alphavbeta3 regulates microfibril assembly in human periodontal ligament cells. Tissue Cell 41(2):85–89. doi:10.1016/j.tice.2008.07.005

    Article  PubMed  CAS  Google Scholar 

  21. Ritty TM, Broekelmann T, Tisdale C, Milewicz DM, Mecham RP (1999) Processing of the fibrillin-1 carboxyl-terminal domain. J Biol Chem 274(13):8933–8940

    Article  PubMed  CAS  Google Scholar 

  22. Woods A, McCarthy JB, Furcht LT, Couchman JR (1993) A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation. Mol Biol Cell 4(6):605–613

    PubMed  CAS  Google Scholar 

  23. Yang JT, Hynes RO (1996) Fibronectin receptor functions in embryonic cells deficient in alpha 5 beta 1 integrin can be replaced by alpha V integrins. Mol Biol Cell 7(11):1737–1748

    PubMed  CAS  Google Scholar 

  24. Bader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95(4):507–519

    Article  PubMed  CAS  Google Scholar 

  25. Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119(4):1093–1105

    PubMed  CAS  Google Scholar 

  26. Yang JT, Bader BL, Kreidberg JA, Ullman-Cullere M, Trevithick JE, Hynes RO (1999) Overlapping and independent functions of fibronectin receptor integrins in early mesodermal development. Dev Biol 215(2):264–277. doi:10.1006/dbio.1999.9451

    Article  PubMed  CAS  Google Scholar 

  27. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21(6):635–637. doi:10.1038/nbt831nbt831

    Article  PubMed  CAS  Google Scholar 

  28. Persengiev SP, Zhu X, Green MR (2004) Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10(1):12–18

    Article  PubMed  CAS  Google Scholar 

  29. Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 101(7):1892–1897. doi:10.1073/pnas.03086981000308698100

    Article  PubMed  CAS  Google Scholar 

  30. Dallas SL, Sivakumar P, Jones CJ, Chen Q, Peters DM, Mosher DF, Humphries MJ, Kielty CM (2005) Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1. J Biol Chem 280(19):18871–18880. doi:10.1074/jbc.M410762200

    Article  PubMed  CAS  Google Scholar 

  31. Kinsey R, Williamson MR, Chaudhry S, Mellody KT, McGovern A, Takahashi S, Shuttleworth CA, Kielty CM (2008) Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J Cell Sci 121(Pt 16):2696–2704. doi:10.1242/jcs.029819

    Article  PubMed  CAS  Google Scholar 

  32. Velling T, Risteli J, Wennerberg K, Mosher DF, Johansson S (2002) Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. J Biol Chem 277(40):37377–37381. doi:10.1074/jbc.M206286200M206286200

    Article  PubMed  CAS  Google Scholar 

  33. Roman J, McDonald JA (1993) Fibulin’s organization into the extracellular matrix of fetal lung fibroblasts is dependent on fibronectin matrix assembly. Am J Respir Cell Mol Biol 8(5):538–545

    PubMed  CAS  Google Scholar 

  34. Godyna S, Mann DM, Argraves WS (1995) A quantitative analysis of the incorporation of fibulin-1 into extracellular matrix indicates that fibronectin assembly is required. Matrix Biol 14(6):467–477

    Article  PubMed  CAS  Google Scholar 

  35. Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13(10):3546–3559. doi:10.1091/mbc.E02-01-0048

    Article  PubMed  CAS  Google Scholar 

  36. Pereira M, Rybarczyk BJ, Odrljin TM, Hocking DC, Sottile J, Simpson-Haidaris PJ (2002) The incorporation of fibrinogen into extracellular matrix is dependent on active assembly of a fibronectin matrix. J Cell Sci 115(Pt 3):609–617

    PubMed  CAS  Google Scholar 

  37. Pelham RJ Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25):13661–13665

    Article  PubMed  CAS  Google Scholar 

  38. Zhang H, Hu W, Ramirez F (1995) Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J Cell Biol 129(4):1165–1176

    Article  PubMed  CAS  Google Scholar 

  39. Mariencheck MC, Davis EC, Zhang H, Ramirez F, Rosenbloom J, Gibson MA, Parks WC, Mecham RP (1995) Fibrillin-1 and fibrillin-2 show temporal and tissue-specific regulation of expression in developing elastic tissues. Connect Tissue Res 31(2):87–97

    Article  PubMed  CAS  Google Scholar 

  40. Mariani TJ, Reed JJ, Shapiro SD (2002) Expression profiling of the developing mouse lung: insights into the establishment of the extracellular matrix. Am J Respir Cell Mol Biol 26(5):541–548

    PubMed  CAS  Google Scholar 

  41. Yin W, Smiley E, Germiller J, Sanguineti C, Lawton T, Pereira L, Ramirez F, Bonadio J (1995) Primary structure and developmental expression of Fbn-1, the mouse fibrillin gene. J Biol Chem 270(4):1798–1806

    Article  PubMed  CAS  Google Scholar 

  42. Kelleher CM, McLean SE, Mecham RP (2004) Vascular extracellular matrix and aortic development. Curr Top Dev Biol 62:153–188. doi:10.1016/S0070-2153(04)62006-0

    Article  PubMed  CAS  Google Scholar 

  43. Czyz J, Wobus A (2001) Embryonic stem cell differentiation: the role of extracellular factors. Differentiation 68(4–5):167–174

    Article  PubMed  CAS  Google Scholar 

  44. Larsen M, Artym VV, Green JA, Yamada KM (2006) The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 18(5):463–471. doi:10.1016/j.ceb.2006.08.009

    Article  PubMed  CAS  Google Scholar 

  45. Berrier AL, Yamada KM (2007) Cell-matrix adhesion. J Cell Physiol 213(3):565–573. doi:10.1002/jcp.21237

    Article  PubMed  CAS  Google Scholar 

  46. Klees RF, Salasznyk RM, Vandenberg S, Bennett K, Plopper GE (2007) Laminin-5 activates extracellular matrix production and osteogenic gene focusing in human mesenchymal stem cells. Matrix Biol 26(2):106–114. doi:10.1016/j.matbio.2006.10.001

    Article  PubMed  CAS  Google Scholar 

  47. Hwang NS, Varghese S, Zhang Z, Elisseeff J (2006) Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng 12(9):2695–2706. doi:10.1089/ten.2006.12.2695

    Article  PubMed  CAS  Google Scholar 

  48. Jean C, Gravelle P, Fournie JJ, Laurent G (2011) Influence of stress on extracellular matrix and integrin biology. Oncogene 30(24):2697–2706. doi:10.1038/onc.2011.27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

RKB is grateful to TMR for his excellent mentorship during this project. TMR gratefully acknowledges support from NIH NIAMS RO3 AR 049887-02, Pennsylvania, Department of Health, and the Penn State, Department of Orthopaedic Surgery, Division of Musculoskeletal Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Boregowda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boregowda, R.K., Krovic, B.M. & Ritty, T.M. Selective integrin subunit reduction disrupts fibronectin extracellular matrix deposition and fibrillin 1 gene expression. Mol Cell Biochem 369, 205–216 (2012). https://doi.org/10.1007/s11010-012-1383-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1383-y

Keywords

Navigation