Skip to main content
Log in

S-nitrosylation of c-Src via NMDAR-nNOS module promotes c-Src activation and NR2A phosphorylation in cerebral ischemia/reperfusion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previous studies suggested that activated c-Src promote the tyrosine phosphorylation of NMDA receptor subunit NR2A, and thus aggravate the injury induced by transient cerebral ischemia/reperfusion (I/R) in rat hippocampus CA1 region. In this study, we examined the effect of nitric oxide (NO) on the activation of c-Src and the tyrosine phosphorylation of NMDA receptor NR2A subunit. The results show that S-nitrosylation and the phosphorylation of c-Src were induced after cerebral I/R in rats, and administration of nNOS inhibitor 7-NI, nNOS antisense oligonucleotides and exogenous NO donor sodium nitroprusside diminished the increased S-nitrosylation and phosphorylation of c-Src during cerebral I/R. The cysteine residues of c-Src modified by S-nitrosylation are Cys489, Cys498, and Cys500. On the other hand, NMDAR antagonist MK-801 could attenuate the S-nitrosylation and activation of c-Src. Taken together, the S-nitrosylation of c-Src is provoked by NO derived from endogenous nNOS, which is activated by Ca2+ influx from NMDA receptors, and promotes the auto-phosphorylation at tyrosines and further phosphorylates NR2A. The molecular mechanism we outlined here is a novel postsynaptic NMDAR-nNOS/c-Src-mediated signaling amplification, the ‘NMDAR-nNOS → NO → SNO-c-Src → p-c-Src → NMDAR-nNOS’ cycle, which presents the possibility as a potential therapeutic target for stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

I/R:

Ischemia/reperfusion

AS-ODNs:

Antisense oligodeoxynucleotides

MS-ODNs:

Missenses oligodeoxynucleotides

DTT:

1,4-Dithiothreitol

IB:

Immunoblotting

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

PMSF:

Phenylmethylsulfonyl fluoride

SNP:

Sodium nitroprusside

GSNO:

S-nitrosoglutathione

NO:

Nitric oxide

NOS:

NO synthase

NMDA:

N-methyl-d-aspartate

NR:

NMDA receptor

AMPA:

α-Amino-3-hydroxy-5-methyl-4-soxazolepropionic acid

KA:

Kainite

MK-801:

(5R,10S)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine hydrogen maleate

7-NI:

7-Nitroindazole

NEM:

N-Ethylmaleimide

References

  1. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  PubMed  CAS  Google Scholar 

  2. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    Article  PubMed  CAS  Google Scholar 

  3. Morikawa E, Mori H, Kiyama Y, Mishina M, Asano T, Kirino T (1998) Attenuation of focal ischemic brain injury in mice deficient in the epsilon1 (NR2A) subunit of NMDA receptor. J Neurosci 18:9727–9732

    PubMed  CAS  Google Scholar 

  4. Seeburg PH (1993) The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 16:359–365

    Article  PubMed  CAS  Google Scholar 

  5. Mori H, Mishina M (1995) Structure and function of the NMDA receptor channel. Neuropharmacology 34:1219–1237

    Article  PubMed  CAS  Google Scholar 

  6. Watanabe M, Inoue Y, Sakimura K, Mishina M (1992) Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3:1138–1140

    Article  PubMed  CAS  Google Scholar 

  7. Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS (2003) Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 43:335–358

    Article  PubMed  CAS  Google Scholar 

  8. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  PubMed  CAS  Google Scholar 

  9. Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7–A14

    PubMed  CAS  Google Scholar 

  10. Ali DW, Salter MW (2001) NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol 11:336–342

    Article  PubMed  CAS  Google Scholar 

  11. Yu XM, Askalan R, Keil GJ 2nd, Salter MW (1997) NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275:674–678

    Article  PubMed  CAS  Google Scholar 

  12. Wang YT, Salter MW (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369:233–235

    Article  PubMed  CAS  Google Scholar 

  13. Hou XY, Zhang GY, Zong YY (2003) Suppression of postsynaptic density protein 95 expression attenuates increased tyrosine phosphorylation of NR2A subunits of N-methyl-D-aspartate receptors and interactions of Src and Fyn with NR2A after transient brain ischemia in rat hippocampus. Neurosci Lett 343:125–128

    Article  PubMed  CAS  Google Scholar 

  14. Chen M, Hou X, Zhang G (2003) Tyrosine kinase and tyrosine phosphatase participate in regulation of interactions of NMDA receptor subunit 2A with Src and Fyn mediated by PSD-95 after transient brain ischemia. Neurosci Lett 339:29–32

    Article  PubMed  CAS  Google Scholar 

  15. Zhang F, Li C, Wang R, Han D, Zhang QG, Zhou C, Yu HM, Zhang GY (2007) Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion. Neuroscience 150:938–949

    Article  PubMed  CAS  Google Scholar 

  16. Hou XY, Zhang GY, Yan JZ, Chen M, Liu Y (2002) Activation of NMDA receptors and L-type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD95-NR2A complex after transient brain ischemia. Brain Res 955:123–132

    Article  PubMed  CAS  Google Scholar 

  17. Liu Y, Zhang G, Gao C, Hou X (2001) NMDA receptor activation results in tyrosine phosphorylation of NMDA receptor subunit 2A(NR2A) and interaction of Pyk2 and Src with NR2A after transient cerebral ischemia and reperfusion. Brain Res 909:51–58

    Article  PubMed  CAS  Google Scholar 

  18. Park HS, Huh SH, Kim MS, Lee SH, Choi EJ (2000) Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation. Proc Natl Acad Sci USA 97:14382–14387

    Article  PubMed  CAS  Google Scholar 

  19. Abu-Soud HM, Wang J, Rousseau DL, Fukuto JM, Ignarro LJ, Stuehr DJ (1995) Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis. J Biol Chem 270:22997–23006

    Article  PubMed  CAS  Google Scholar 

  20. Yu HM, Xu J, Li C, Zhou C, Zhang F, Han D, Zhang GY (2008) Coupling between neuronal nitric oxide synthase and glutamate receptor 6-mediated c-Jun N-terminal kinase signaling pathway via S-nitrosylation contributes to ischemia neuronal death. Neuroscience 155:1120–1132

    Article  PubMed  CAS  Google Scholar 

  21. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    Article  PubMed  CAS  Google Scholar 

  22. Ogita K, Yoneda Y (1994) Selective potentiation of DNA binding activities of both activator protein 1 and cyclic AMP response element binding protein through in vivo activation of N-methyl-D-aspartate receptor complex in mouse brain. J Neurochem 63:525–534

    Article  PubMed  CAS  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  24. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    Article  PubMed  CAS  Google Scholar 

  25. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    Article  PubMed  CAS  Google Scholar 

  26. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  PubMed  CAS  Google Scholar 

  27. Forrester MT, Foster MW, Stamler JS (2007) Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J Biol Chem 282:13977–13983

    Article  PubMed  CAS  Google Scholar 

  28. Noguchi S, Jianmongkol S, Bender AT, Kamada Y, Demady DR, Osawa Y (2000) Guanabenz-mediated inactivation and enhanced proteolytic degradation of neuronal nitric-oxide synthase. J Biol Chem 275:2376–2380

    Article  PubMed  CAS  Google Scholar 

  29. Pei L, Li Y, Zhang GY, Cui ZC, Zhu ZM (2000) Mechanisms of regulation of tyrosine phosphorylation of NMDA receptor subunit 2B after cerebral ischemia/reperfusion. Acta Pharmacol Sin 21:695–700

    PubMed  CAS  Google Scholar 

  30. Dawson VL, Dawson TM (1996) Free radicals and neuronal cell death. Cell Death Differ 3:71–78

    PubMed  CAS  Google Scholar 

  31. Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139

    Article  PubMed  CAS  Google Scholar 

  32. Sun CK, Man K, Ng KT, Ho JW, Lim ZX, Cheng Q, Lo CM, Poon RT, Fan ST (2008) Proline-rich tyrosine kinase 2 (Pyk2) promotes proliferation and invasiveness of hepatocellular carcinoma cells through c-Src/ERK activation. Carcinogenesis 29:2096–2105

    Article  PubMed  CAS  Google Scholar 

  33. Xu J, Liu Y, Zhang GY (2008) Neuroprotection of GluR5-containing kainate receptor activation against ischemic brain injury through decreasing tyrosine phosphorylation of N-methyl-D-aspartate receptors mediated by Src kinase. J Biol Chem 283:29355–29366

    Article  PubMed  CAS  Google Scholar 

  34. Lennmyr F, Ericsson A, Gerwins P, Akterin S, Ahlstrom H, Terent A (2004) Src family kinase-inhibitor PP2 reduces focal ischemic brain injury. Acta Neurol Scand 110:175–179

    Article  PubMed  CAS  Google Scholar 

  35. Farrokhnia N, Roos MW, Terent A, Lennmyr F (2005) Experimental treatment for focal hyperglycemic ischemic brain injury in the rat. Exp Brain Res 167:310–314

    Article  PubMed  CAS  Google Scholar 

  36. Zheng XM, Resnick RJ, Shalloway D (2000) A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. EMBO J 19:964–978

    Article  PubMed  CAS  Google Scholar 

  37. Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287:121–149

    PubMed  Google Scholar 

  38. MacMillan-Crow LA, Greendorfer JS, Vickers SM, Thompson JA (2000) Tyrosine nitration of c-SRC tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch Biochem Biophys 377:350–356

    Article  PubMed  CAS  Google Scholar 

  39. Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I (2008) Nitric oxide evolution and perception. J Exp Bot 59:25–35

    Article  PubMed  CAS  Google Scholar 

  40. Rahman MA, Senga T, Ito S, Hyodo T, Hasegawa H, Hamaguchi M (2010) S-nitrosylation at cysteine 498 of c-Src tyrosine kinase regulates nitric oxide-mediated cell invasion. J Biol Chem 285:3806–3814

    Article  PubMed  CAS  Google Scholar 

  41. Takagi N, Cheung HH, Bissoon N, Teves L, Wallace MC, Gurd JW (1999) The effect of transient global ischemia on the interaction of Src and Fyn with the N-methyl-D-aspartate receptor and postsynaptic densities: possible involvement of Src homology 2 domains. J Cereb Blood Flow Metab 19:880–888

    Article  PubMed  CAS  Google Scholar 

  42. Kalia LV, Pitcher GM, Pelkey KA, Salter MW (2006) PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex. EMBO J 25:4971–4982

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 30870543, 31000360), the Natural Science Funds of Jiangsu Province (Nos. BK2010171, BK2010176), the Graduate Innovation Project of Jiangsu Province (CX08S-004Z) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Dr. Chong Li was supported by “New Century Excellent Talents in University (NCET)” program of Chinese Ministry of Education and “Six Talent Peaks Program” of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Yi Zhang.

Additional information

Li-Juan Tang, Chong Li, and Shu-Qun Hu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, LJ., Li, C., Hu, SQ. et al. S-nitrosylation of c-Src via NMDAR-nNOS module promotes c-Src activation and NR2A phosphorylation in cerebral ischemia/reperfusion. Mol Cell Biochem 365, 363–377 (2012). https://doi.org/10.1007/s11010-012-1280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1280-4

Keywords

Navigation