Skip to main content

Advertisement

Log in

Fhl1 as a downstream target of Wnt signaling to promote myogenesis of C2C12 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previous studies have shown that Wnt signaling is involved in postnatal mammalian myogenesis; however, the downstream mechanism of Wnt signaling is not fully understood. This study reports that the murine four-and-a-half LIM domain 1 (Fhl1) could be stimulated by β-catenin or LiCl treatment to induce myogenesis. In contrast, knockdown of the Fhl1 gene expression in C2C12 cells led to reduced myotube formation. We also adopted reporter assays to demonstrate that either β-catenin or LiCl significantly activated the Fhl1 promoter, which contains four putative consensus TCF/LEF binding sites. Mutations of two of these sites caused a significant decrease in promoter activity by luciferase reporter assay. Thus, we suggest that Wnt signaling induces muscle cell differentiation, at least partly, through Fhl1 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Fhl1:

Four-and-a-half LIM domain 1

LiCl:

Lithium chloride

TCF:

T-cell specific factor

LEF:

Lymphoid enhancer-binding factor

PCR:

Polymerase chain reaction

References

  1. Cossu G, Borello U (1999) Wnt signaling and the activation of myogenesis in mammals. EMBO J 18:6867–6872

    Article  PubMed  CAS  Google Scholar 

  2. Descamps S, Arzouk H, Bacou F, Bernardi H, Fedon Y, Gay S, Reyne Y, Rossano B, Levin J (2008) Inhibition of myoblast differentiation by Sfrp1 and Sfrp2. Cell Tissue Res 332:299–306

    Article  PubMed  CAS  Google Scholar 

  3. Han XH, Jin YR, Seto M, Yoon JK (2011) A WNT/beta-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis. J Biol Chem 286:10649–10659

    Article  PubMed  CAS  Google Scholar 

  4. Bernardi H, Gay S, Fedon Y, Vernus B, Bonnieu A, Bacou F (2011) Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. Am J Physiol Cell Physiol 300:C1122–C1138

    Article  PubMed  CAS  Google Scholar 

  5. Steelman CA, Recknor JC, Nettleton D, Reecy JM (2006) Transcriptional profiling of myostatin-knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy. FASEB J 20:580–582

    PubMed  CAS  Google Scholar 

  6. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010

    Article  PubMed  CAS  Google Scholar 

  7. Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409

    Article  PubMed  CAS  Google Scholar 

  8. Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–59

    Article  PubMed  CAS  Google Scholar 

  9. Phillips HM, Murdoch JN, Chaudhry B, Copp AJ, Henderson DJ (2005) Vangl2 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract. Circ Res 96:292–299

    Article  PubMed  CAS  Google Scholar 

  10. Flaherty MP, Abdel-Latif A, Li Q, Hunt G, Ranjan S, Ou Q, Tang XL, Johnson RK, Bolli R, Dawn B (2008) Noncanonical Wnt11 signaling is sufficient to induce cardiomyogenic differentiation in unfractionated bone marrow mononuclear cells. Circulation 117:2241–2252

    Article  PubMed  CAS  Google Scholar 

  11. Abdul-Ghani M, Dufort D, Stiles R, De Repentigny Y, Kothary R, Megeney LA (2011) Wnt11 promotes cardiomyocyte development by caspase-mediated suppression of canonical Wnt signals. Mol Cell Biol 31:163–178

    Article  PubMed  CAS  Google Scholar 

  12. Giarré M, Semënov MV, Brown AM (1998) Wnt signaling stabilizes the dual-function protein beta-catenin in diverse cell types. Ann N Y Acad Sci 857:43–55

    Article  PubMed  Google Scholar 

  13. Dawid IB, Breen JJ, Toyama R (1998) LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet 14:156–162

    Article  PubMed  CAS  Google Scholar 

  14. Lee SM, Tsui SK, Chan KK, Garcia-Barcelo M, Waye MM, Fung KP, Liew CC, Lee CY (1998) Chromosomal mapping, tissue distribution and cDNA sequence of four-and-a-half LIM domain protein 1 (FHL1). Gene 216:163–170

    Article  PubMed  CAS  Google Scholar 

  15. McGrath MJ, Cottle DL, Nguyen MA, Dyson JM, Coghill ID, Robinson PA, Holdsworth M, Cowling BS, Hardeman EC, Mitchell CA, Brown S (2006) Four and a half LIM protein 1 binds myosin-binding protein C and regulates myosin filament formation and sarcomere assembly. J Biol Chem 281:7666–7683

    Article  PubMed  CAS  Google Scholar 

  16. McGrath MJ, Mitchell CA, Coghill ID, Robinson PA, Brown S (2003) Skeletal muscle LIM protein 1 (SLIM1/FHL1) induces alpha 5 beta -1-integrin-dependent myocyte elongation. Am J Physiol Cell Physiol 285:C1513–C1526

    PubMed  CAS  Google Scholar 

  17. Ding L, Wang Z, Yan J, Yang X, Liu A, Qiu W, Zhu J, Han J, Zhang H, Lin J, Cheng L, Qin X, Niu C, Yuan B, Wang X, Zhu C, Zhou Y, Li J, Song H, Huang C, Ye Q (2009) Human four-and-a-half LIM family members suppress tumor cell growth through a TGF-beta-like signaling pathway. J Clin Invest 119:349–361

    PubMed  CAS  Google Scholar 

  18. Lin J, Ding L, Jin R, Zhang H, Cheng L, Qin X, Chai J, Ye Q (2009) Four and a half LIM domains 1 (FHL1) and receptor interacting protein of 140 kDa (RIP140) interact and cooperate in estrogen signaling. Int J Biochem Cell Biol 41:1613–1618

    Article  PubMed  CAS  Google Scholar 

  19. Purcell NH, Darwis D, Bueno OF, Müller JM, Schüle R, Molkentin JD (2004) Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocytes. Mol Cell Biol 24:1081–1095

    Article  PubMed  CAS  Google Scholar 

  20. Cowling BS, McGrath MJ, Nguyen MA, Cottle DL, Kee AJ, Brown S, Schessl J, Zou Y, Joya J, Bönnemann CG, Hardeman EC, Mitchell CA (2008) Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy. J Cell Biol 183:1033–1048

    Article  PubMed  CAS  Google Scholar 

  21. Wang J, Qin H, Liang J, Zhu Y, Liang L, Zheng M, Han H (2007) The transcriptional repression activity of KyoT2 on the Notch/RBP-J pathway is regulated by PIAS1-catalyzed SUMOylation. J Mol Biol 370:27–38

    Article  PubMed  CAS  Google Scholar 

  22. Liang L, Zhang HW, Liang J, Niu XL, Zhang SZ, Feng L, Liang YM, Han H (2008) KyoT3, an isoform of murine FHL1, associates with the transcription factor RBP-J and represses the RBP-J-mediated transactivation. Biochim Biophys Acta 1779:805–810

    PubMed  CAS  Google Scholar 

  23. Sheikh F, Raskin A, Chu PH, Lange S, Domenighetti AA, Zheng M, Liang X, Zhang T, Yajima T, Gu Y, Dalton ND, Mahata SK, Dorn GW 2nd, Heller-Brown J, Peterson KL, Omens JH, McCulloch AD, Chen J (2008) An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J Clin Invest 118:3870–3880

    Article  PubMed  CAS  Google Scholar 

  24. Windpassinger C, Schoser B, Straub V, Hochmeister S, Noor A, Lohberger B, Farra N, Petek E, Schwarzbraun T, Ofner L, Löscher WN, Wagner K, Lochmüller H, Vincent JB, Quasthoff S (2008) An X-linked myopathy with postural muscle atrophy and generalized hypertrophy, termed XMPMA, is caused by mutations in FHL1. Am J Hum Genet 82:88–99

    Article  PubMed  CAS  Google Scholar 

  25. Schoser B, Goebel HH, Janisch I, Quasthoff S, Rother J, Bergmann M, Müller-Felber W, Windpassinger C (2009) Consequences of mutations within the C terminus of the FHL1 gene. Neurology 73:543–551

    Article  PubMed  CAS  Google Scholar 

  26. Quinzii CM, Vu TH, Min KC, Tanji K, Barral S, Grewal RP, Kattah A, Camaño P, Otaegui D, Kunimatsu T, Blake DM, Wilhelmsen KC, Rowland LP, Hays AP, Bonilla E, Hirano M (2008) X-linked dominant scapuloperoneal myopathy is due to a mutation in the gene encoding four-and-a-half-LIM protein 1. Am J Hum Genet 82:208–213

    Article  PubMed  CAS  Google Scholar 

  27. Chen DH, Raskind WH, Parson WW, Sonnen JA, Vu T, Zheng Y, Matsushita M, Wolff J, Lipe H, Bird TD (2010) A novel mutation in FHL1 in a family with X-linked scapuloperoneal myopathy: phenotypic spectrum and structural study of FHL1 mutations. J Neurol Sci 296:22–29

    Article  PubMed  CAS  Google Scholar 

  28. Schessl J, Zou Y, McGrath MJ, Cowling BS, Maiti B, Chin SS, Sewry C, Battini R, Hu Y, Cottle DL, Rosenblatt M, Spruce L, Ganguly A, Kirschner J, Judkins AR, Golden JA, Goebel HH, Muntoni F, Flanigan KM, Mitchell CA, Bönnemann CG (2008) Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy. J Clin Invest 118:904–912

    PubMed  CAS  Google Scholar 

  29. Gueneau L, Bertrand AT, Jais JP, Salih MA, Stojkovic T, Wehnert M, Hoeltzenbein M, Spuler S, Saitoh S, Verschueren A, Tranchant C, Beuvin M, Lacene E, Romero NB, Heath S, Zelenika D, Voit T, Eymard B, Ben Yaou R, Bonne G (2009) Mutations of the FHL1 gene cause Emery-Dreifuss muscular dystrophy. Am J Hum Genet 85:338–353

    Article  PubMed  CAS  Google Scholar 

  30. Fryknäs M, Wickenberg-Bolin U, Göransson H, Gustafsson MG, Foukakis T, Lee JJ, Landegren U, Höög A, Larsson C, Grimelius L, Wallin G, Pettersson U, Isaksson A (2006) Molecular markers for discrimination of benign and malignant follicular thyroid tumors. Tumour Biol 27:211–220

    Article  PubMed  Google Scholar 

  31. Li X, Jia Z, Shen Y, Ichikawa H, Jarvik J, Nagele RG, Goldberg GS (2008) Coordinate suppression of Sdpr and Fhl1 expression in tumors of the breast, kidney, and prostate. Cancer Sci 99:1326–1333

    Article  PubMed  CAS  Google Scholar 

  32. Sakashita K, Mimori K, Tanaka F, Kamohara Y, Inoue H, Sawada T, Hirakawa K, Mori M (2008) Clinical significance of loss of Fhl1 expression in human gastric cancer. Ann Surg Oncol 15:2293–2300

    Article  PubMed  Google Scholar 

  33. Matsumoto M, Kawakami K, Enokida H, Toki K, Matsuda R, Chiyomaru T, Nishiyama K, Kawahara K, Seki N, Nakagawa M (2010) CpG hypermethylation of human four-and-a-half LIM domains 1 contributes to migration and invasion activity of human bladder cancer. Int J Mol Med 26:241–247

    PubMed  CAS  Google Scholar 

  34. Niu C, Liang C, Guo J, Cheng L, Zhang H, Qin X, Zhang Q, Ding L, Yuan B, Xu X, Li J, Lin J, Ye Q (2011) Downregulation and growth inhibitory role of FHL1 in lung cancer. Int J Cancer. doi:10.1002/ijc.26259 [Epub ahead of print]

    Google Scholar 

  35. Shen Y, Jia Z, Nagele RG, Ichikawa H, Goldberg GS (2006) SRC uses Cas to suppress Fhl1 in order to promote nonanchored growth and migration of tumor cells. Cancer Res 66:1543–1552

    Article  PubMed  CAS  Google Scholar 

  36. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  37. Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A (1991) Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19:4293

    Article  PubMed  CAS  Google Scholar 

  38. Landt O, Grunert HP, Hahn U (1990) A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96:125–128

    Article  PubMed  CAS  Google Scholar 

  39. Eastman Q, Grosschedl R (1999) Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 11:233–240

    Article  PubMed  CAS  Google Scholar 

  40. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214

    Article  PubMed  Google Scholar 

  41. Bernard P, Harley VR (2007) Wnt4 action in gonadal development and sex determination. Int J Biochem Cell Biol 39:31–43

    Article  PubMed  CAS  Google Scholar 

  42. Chang MV, Chang JL, Gangopadhyay A, Shearer A, Cadigan KM (2008) Activation of wingless targets requires bipartite recognition of DNA by TCF. Curr Biol 18:1877–1881

    Article  PubMed  CAS  Google Scholar 

  43. Huguet EL, McMahon JA, McMahon AP, Bicknell R, Harris AL (1994) Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res 54:2615–2621

    PubMed  CAS  Google Scholar 

  44. Akimoto T, Ushida T, Miyaki S, Akaogi H, Tsuchiya K, Yan Z, Williams RS, Tateishi T (2005) Mechanical stretch inhibits myoblast-to-adipocyte differentiation through Wnt signaling. Biochem Biophys Res Commun 329:381–385

    Article  PubMed  CAS  Google Scholar 

  45. Nakashima A, Katagiri T, Tamura M (2005) Cross-talk between Wnt and bone morphogenetic protein 2 (BMP-2) signaling in differentiation pathway of C2C12 myoblasts. J Biol Chem 280:37660–37668

    Article  PubMed  CAS  Google Scholar 

  46. Takata H, Terada K, Oka H, Sunada Y, Moriguchi T, Nohno T (2007) Involvement of Wnt4 signaling during myogenic proliferation and differentiation of skeletal muscle. Dev Dyn 236:2800–2807

    Article  PubMed  CAS  Google Scholar 

  47. Honda T, Yamamoto H, Ishii A, Inui M (2010) PDZRN3 negatively regulates BMP-2-induced osteoblast differentiation through inhibition of Wnt signaling. Mol Biol Cell 21:3269–3277

    Article  PubMed  CAS  Google Scholar 

  48. Morgan MJ, Madgwick AJ (1999) The LIM proteins FHL1 and FHL3 are expressed differently in skeletal muscle. Biochem Biophys Res Commun 255:245–250

    Article  PubMed  CAS  Google Scholar 

  49. Love JJ, Li X, Case DA, Giese K, Grosschedl R, Wright PE (1995) Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376:791–795

    Article  PubMed  CAS  Google Scholar 

  50. Tanaka S, Terada K, Nohno T (2011) Canonical Wnt signaling is involved in switching from cell proliferation to myogenic differentiation of mouse myoblast cells. J Mol Signaling 6:12

    Article  CAS  Google Scholar 

  51. Chang J, Sonoyama W, Wang Z, Jin Q, Zhang C, Krebsbach PH, Giannobile W, Shi S, Wang CY (2008) Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 282:30938–30948

    Article  Google Scholar 

  52. Xiang G, Yang Q, Wang B, Sekiya N, Mu X, Tang Y, Chen CW, Okada M, Cummins J, Gharaibeh B, Huard J (2011) Lentivirus-mediated Wnt11 gene transfer enhances cardiomyogenic differentiation of skeletal muscle-derived stem cells. Mol Ther 19:790–796

    Article  PubMed  CAS  Google Scholar 

  53. Aragaki M, Tsuchiya K, Okamoto R, Yoshioka S, Nakamura T, Sakamoto N, Kanai T, Watanabe M (2008) Proteasomal degradation of Atoh1 by aberrant Wnt signaling maintains the undifferentiated state of colon cancer. Biochem Biophys Res Commun 368:923–929

    Article  PubMed  CAS  Google Scholar 

  54. Suzuki M, Shigematsu H, Nakajima T, Kubo R, Motohashi S, Sekine Y, Shibuya K, Iizasa T, Hiroshima K, Nakatani Y, Gazdar AF, Fujisawa T (2007) Synchronous alterations of Wnt and epidermal growth factor receptor signaling pathways through aberrant methylation and mutation in non small cell lung cancer. Clin Cancer Res 13:6087–6092

    Article  PubMed  CAS  Google Scholar 

  55. Zhao CH, Bu XM, Zhang N (2007) Hypermethylation and aberrant expression of Wnt antagonist secreted frizzled-related protein 1 in gastric cancer. World J Gastroenterol 13:2214–2217

    Article  PubMed  CAS  Google Scholar 

  56. Hadjihannas MV, Brückner M, Jerchow B, Birchmeier W, Dietmaier W, Behrens J (2006) Aberrant Wnt/beta-catenin signaling can induce chromosomal instability in colon cancer. Proc Natl Acad Sci U S A 103:10747–10752

    Article  PubMed  CAS  Google Scholar 

  57. Veeck J, Niederacher D, An H, Klopocki E, Wiesmann F, Betz B, Galm O, Camara O, Dürst M, Kristiansen G, Huszka C, Knüchel R, Dahl E (2006) Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 25:3479–3488

    Article  PubMed  CAS  Google Scholar 

  58. Urakami S, Shiina H, Enokida H, Kawakami T, Tokizane T, Ogishima T, Tanaka Y, Li LC, Ribeiro-Filho LA, Terashima M, Kikuno N, Adachi H, Yoneda T, Kishi H, Shigeno K, Konety BR, Igawa M, Dahiya R (2006) Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clin Cancer Res 12:383–391

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Pin Ling for supplying the pcDNA plasmid and Dr. Hsi-Tien Wu for the C2C12. This study was supported by the NSC (National Science Council, Taiwan) under grant numbers 97-2311-B-415-002- and 98-2311-B-415-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu-Hui Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JY., Chien, IC., Lin, WY. et al. Fhl1 as a downstream target of Wnt signaling to promote myogenesis of C2C12 cells. Mol Cell Biochem 365, 251–262 (2012). https://doi.org/10.1007/s11010-012-1266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1266-2

Keywords

Navigation