Skip to main content

Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats

Abstract

In hypertensive animals and patients, oxidative stress represents the primary risk factor for progression of left ventricular hypertrophy. Recently, it has been demonstrated that hydrogen, as a novel antioxidant, can selectively reduce hydroxyl radicals and peroxynitrite anion to exert therapeutic antioxidant activity. In the current study, we explored the effect of chronic treatment with hydrogen-rich saline (HRS) on left ventricular hypertrophy in spontaneously hypertensive rats (SHR). The 8-week-old male SHR and age-matched Wistar-Kyoto rats (WKY) were randomized into HRS-treated (6 ml/kg/day for 3 months, i.p.) and vehicle-treated groups. HRS treatment had no significant effect on blood pressure, but it effectively attenuated left ventricular hypertrophy in SHR. HRS treatment abated oxidative stress, restored the activity of antioxidant enzymes including GPx, GST, catalase, and SOD, suppressed NADPH oxidase activity and downregulated Nox2 and Nox4 expression in left ventricles of SHR. HRS treatment suppressed pro-inflammatory cytokines including IL-1β, IL-6, TNF-α, and MCP-1, and inhibited NF-κB activation through preventing IκBα degradation in left ventricles of SHR. HRS treatment preserved mitochondrial function through restoring electron transport chain enzyme activity, repressing ROS formation, and enhancing ATP production in left ventricles of SHR. Moreover, HRS treatment suppressed ACE expression and locally reduced angiotensin II generation in left ventricles of SHR. In conclusion, HRS treatment attenuates left ventricular hypertrophy through abating oxidative stress, suppressing inflammatory process, preserving mitochondrial function, in which suppression of HRS on angiotensin II in left ventricles locally might be involved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Paolisso G, Galzerano D, Gambardella A, Varricchio G, Saccomanno F, D’Amore A, Varricchio M, D’Onofrio F (1995) Left ventricular hypertrophy is associated with a stronger impairment of non-oxidative glucose metabolism in hypertensive patients. Eur J Clin Invest 25:529–533

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Li L, Yi-Ming W, Li ZZ, Zhao L, Yu YS, Li DJ, Xia CY, Liu JG, Su DF (2008) Local RAS and inflammatory factors are involved in cardiovascular hypertrophy in spontaneously hypertensive rats. Pharmacol Res 58:196–201

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Kass DA, Bronzwaer JG, Paulus WJ (2004) What mechanisms underlie diastolic dysfunction in heart failure? Circ Res 94:1533–1542

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK (2006) Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci USA 103:7432–7437

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2003) Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 92:139–150

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    PubMed  CAS  Google Scholar 

  7. 7.

    Alvarez MC, Caldiz C, Fantinelli JC, Garciarena CD, Console GM, Chiappe de Cingolani GE, Mosca SM (2008) Is cardiac hypertrophy in spontaneously hypertensive rats the cause or the consequence of oxidative stress? Hypertens Res 31:1465–7146

    PubMed  Article  Google Scholar 

  8. 8.

    The Heart Outcomes Prevention Evaluation Study Investigators (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 342:154–160

    Article  Google Scholar 

  9. 9.

    Heart Protection Study Collaborative G (2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:23–33

    Article  Google Scholar 

  10. 10.

    Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Maher P, Salgado KF, Zivin JA, Lapchak PA (2007) A novel approach to screening for new neuroprotective compounds for the treatment of stroke. Brain Res 1173:117–125

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Ji Q, Hui K, Zhang L, Sun X, Li W, Duan M (2011) The effect of hydrogen-rich saline on the brain of rats with transient ischemia. J Surg Res 168:e95–e101

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Ji X, Liu W, Xie K, Liu W, Qu Y, Chao X, Chen T, Zhou J, Fei Z (2010) Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress. Brain Res 1354:196–205

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Wang F, Yu G, Liu SY, Li JB, Wang JF, Bo LL, Qian LR, Sun XJ, Deng XM (2011) Hydrogen-rich saline protects against renal ischemia/reperfusion injury in rats. J Surg Res 167:e339–e344

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S, Makino S, Ohta S, Ogawa S, Fukuda K (2008) Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 373:30–35

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Yu YS, Xie HH, Li L, Song SW, Han P, Cai GJ, Su DF (2010) Effects of low-dose ketanserin on atherosclerosis in rats and rabbits. Can J Physiol Pharmacol 88:1054–1060

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Li YL, Gao L, Zucker IH, Schultz HD (2007) NADPH oxidase-derived superoxide anion mediates angiotensin II-enhanced carotid body chemoreceptor sensitivity in heart failure rabbits. Cardiovasc Res 75:546–554

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Harrison DG, Gongora MC, Guzik TJ, Widder J (2007) Oxidative stress and hypertension. J Am Soc Hypertens 1:30–44

    PubMed  Article  Google Scholar 

  19. 19.

    Elks CM, Mariappan N, Haque M, Guggilam A, Majid DS, Francis J (2009) Chronic NF-κB blockade reduces cytosolic and mitochondrial oxidative stress and attenuates renal injury and hypertension in SHR. Am J Physiol Renal Physiol 296:F298–F305

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Maher P, Salgado KF, Zivin JA, Lapchak PA (2007) A novel approach to screening for new neuroprotective compounds for the treatment of stroke. Brain Res 1173:117–125

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–907

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Takimoto E, Kass DA (2007) Role of Oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49:241–248

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Zimmerman MC, Zucker IH (2009) Mitochondrial dysfunction and mitochondrial-produced reactive oxygen species. Hypertension 53:112–114

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Chan SH, Wu KL, Chang AY, Tai MH, Chan JY (2009) Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension. Hypertension 53:217–227

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Thomas SR, Witting PK, Drummond GR (2008) Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 10:1713–1765

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102:488–496

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    de Cavanagh EM, Piotrkowski B, Basso N, Stella I, Inserra F, Ferder L, Fraga CG (2003) Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB J 17:1096–1098

    PubMed  Google Scholar 

  28. 28.

    Zhang Y, Sun Q, He B, Xiao J, Wang Z, Sun X (2011) Anti-inflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion. Int J Cardiol 148:91–95

    PubMed  Article  Google Scholar 

  29. 29.

    Wang C, Li J, Liu Q, Yang R, Zhang JH, Cao YP, Sun XJ (2011) Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-κB activation in a rat model of amyloid-beta-induced Alzheimer’s disease. Neurosci Lett 491:127–132

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Kai H, Kuwahara F, Tokuda K, Imaizumi T (2006) Perivascular inflammation and hypertensive cardioavscular remodeling. Curr Hypertens Rev 2:263–269

    Article  CAS  Google Scholar 

  31. 31.

    Janssen-Heininger YMW, Poynter ME, Baeuerle PA (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor κB. Free Radic Biol Med 28:1317–1327

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J 10:2247–2258

    PubMed  CAS  Google Scholar 

  33. 33.

    Sanlioglu S, Williams CM, Samavati L, Butler NS, Wang G, McCray PB, Ritchie TC, Hunninghake GW, Zandi E, Engelhardt JF (2001) Lipopolysaccharide induces Rac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-alpha secretion through IKK regulation of NF-kappa B. J Biol Chem 276:30188–30198

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM (1991) Angiotensin II induces smooth muscle proliferation in the normal and injured rat arterial wall. Circ Res 68:450–456

    PubMed  CAS  Google Scholar 

  35. 35.

    Baker KM, Booz GW, Dostal DE (1992) Cardiac action of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Physiol 54:227–241

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Weber KT (1997) Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 96:4065–4082

    PubMed  CAS  Google Scholar 

  38. 38.

    Brasier AR, Jamaluddin M, Han Y, Patterson C, Runge MS (2000) Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor. Mol Cell Biochem 212:155–169

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Takemoto M, Egashira K, Tomita H, Usui M, Okamoto H, Kitabatake A, Shimokawa H, Sueishi K, Takeshita A (1997) Chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade: effects on cardiovascular remodeling in rats induced by the long-term blockade of nitric oxide synthesis. Hypertension 30:1621–1627

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yong-Sheng Yu.

Additional information

Yong-Sheng Yu and Hao Zheng contributed equally to the work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, YS., Zheng, H. Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats. Mol Cell Biochem 365, 233–242 (2012). https://doi.org/10.1007/s11010-012-1264-4

Download citation

Keywords

  • Hydrogen-rich saline
  • Spontaneously hypertensive rats
  • Oxidative stress
  • Inflammation
  • Mitochondria
  • Angiotensin II