Skip to main content
Log in

Involvement of GABAergic and glutamatergic systems in the anticonvulsant activity of 3-alkynyl selenophene in 21 day-old rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we investigated the role of GABAergic and glutamatergic systems in the anticonvulsant action of 3-alkynyl selenophene (3-ASP) in a pilocarpine (PC) model of seizures. To this purpose, 21 day-old rats were administered with an anticonvulsant dose of 3-ASP (50 mg/kg, per oral, p.o.), and [3H]γ-aminobutyric acid (GABA) and [3H]glutamate uptakes were carried out in slices of cerebral cortex and hippocampus. [3H]GABA uptake was decreased in cerebral cortex (64%) and hippocampus (58%) slices of 21 day-old rats treated with 3-ASP. In contrast, no alteration was observed in [3H]glutamate uptake in cerebral cortex and hippocampus slices of 21 day-old rats that received 3-ASP. Considering the drugs that increase synaptic GABA levels, by inhibiting its uptake or catabolism, are effective anticonvulsants, we further investigated the possible interaction between sub-effective doses of 3-ASP and GABA uptake or GABA transaminase (GABA-T) inhibitors in PC-induced seizures in 21 day-old rats. For this end, sub-effective doses of 3-ASP (10 mg/kg, p.o.) and dl-2,4-diamino-n-butyric acid hydrochloride (DABA, an inhibitor of GABA uptake—2 mg/kg, intraperitoneally; i.p.) or aminooxyacetic acid hemihydrochloride (AOAA; a GABA-T inhibitor—10 mg/kg, i.p.) were co-administrated to 21 day-old rats before PC (400 mg/kg; i.p.) treatment, and the appearance of seizures was recorded. Results demonstrated that treatment with AOAA and 3-ASP or DABA and 3-ASP significantly abolished the number of convulsing animals induced by PC. The present study indicates that 3-ASP reduced [3H]GABA uptake, suggesting that its anticonvulsant action is related to an increase in inhibitory tonus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hauser WA (1994) The prevalence and incidence of convulsive disorders in children. Epilepsia 35:1–6

    Article  Google Scholar 

  2. Holopainen IE (2008) Seizures in the developing brain: cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization. Neurochem Int 52:935–947

    Article  PubMed  CAS  Google Scholar 

  3. Ozawa S, Kamiya H, Tsukuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618

    Article  PubMed  CAS  Google Scholar 

  4. Maragakis NJ, Rothstein JD (2004) Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 15:461–473

    Article  PubMed  CAS  Google Scholar 

  5. Czuczwar SJ, Patsalos PN (2001) The new generation of GABA enhancers. Potential in the treatment of epilepsy. CNS Drugs 15:339–350

    Article  PubMed  CAS  Google Scholar 

  6. White HS (1999) Comparative anticonvulsant and mechanistic profile of the established and newer antiepileptic drugs. Epilepsia 40:S2–S10

    Article  PubMed  CAS  Google Scholar 

  7. Jones-Davis DM, Macdonald RL (2003) GABAA receptor function and pharmacology in epilepsy and status epilepticus. Curr Opin Pharmacol 3:12–18

    Article  PubMed  CAS  Google Scholar 

  8. Czapinski P, Blaszczyk B, Czuczwar SJ (2005) Mechanisms of action of antiepileptic drugs. Curr Top Med Chem 5:3–14

    Article  PubMed  CAS  Google Scholar 

  9. Rowley HL, Martin KF, Marsden CA (1995) Decreased GABA release following tonic-clonic seizures is associated with an increase in extracellular glutamate in rat hippocampus in vivo. Neuroscience 68:415–422

    Article  PubMed  CAS  Google Scholar 

  10. Robinson MB, Dowd LA (1997) Heterogeneity and functional subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv Pharmacol 37:69–115

    Article  PubMed  CAS  Google Scholar 

  11. Danbolt NC (1994) The high affinity uptake system for excitatory amino acids in the brain. Progr Neurobiol 44:377–396

    Article  CAS  Google Scholar 

  12. Wilhelm EA, Jesse CR, Bortolatto CF, Nogueira CW, Savegnago L (2009) Antinociceptive and anti-allodynic effects of 3-alkynyl selenophene on different models of nociception in mice. Pharmacol Biochem Behav 93:419–425

    Article  PubMed  CAS  Google Scholar 

  13. Wilhelm EA, Jesse CR, Bortolatto CF, Nogueira CW, Savegnago L (2009) Anticonvulsant and antioxidant effects of 3-alkynyl selenophene in 21-day-old rats on pilocarpine model of seizures. Brain Res Bull 79:281–287

    Article  PubMed  CAS  Google Scholar 

  14. Wilhelm EA, Jesse CR, Prigol M, Alves D, Schumacher RF, Nogueira CW (2010) 3-Alkynyl selenophene protects against carbon-tetrachloride-induced and 2-nitropropane-induced hepatic damage in rats. Cell Biol Toxicol 26:569–577

    Article  PubMed  CAS  Google Scholar 

  15. Alves D, Reis JS, Luchese C, Nogueira CW, Zeni G (2008) Synthesis of 3-alkynylselenophene derivatives by a cooper-free sonogashira cross-coupling reaction. Eur J Org Chem 2:377–382

    Google Scholar 

  16. Schweigert ID, de Oliveira DL, Scheibel F, da Costa F, Wofchuk ST, Souza DO, Perry MLS (2005) Gestational and postnatal malnutrition affects sensitivity of young rats to picrotoxin and quinolinic acid and uptake of GABA by cortical and hippocampal slices. Dev Brain Res 154:177–185

    Article  CAS  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  18. Amabeoku GJ (1999) Gamma-aminobutyric acid and glutamic acid receptors may mediate theophylline-induced seizures in mice. Gen Pharmacol 32:365–372

    Article  PubMed  CAS  Google Scholar 

  19. Treiman DM (2001) GABAergic mechanisms in epilepsy. Epilepsia 42:8–12

    Article  PubMed  Google Scholar 

  20. Lippert B, Metcalf BW, Jung MJ, Casara P (1977) 4-Aminohex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric-acid aminotransferase in mammalian brain. Eur J Biochem 74:441–445

    Article  PubMed  CAS  Google Scholar 

  21. Swinyard EA, White HS, Wolf HH, Bondinell WE (1991) Anticonvulsant profiles of the potent and orally active GABA uptake inhibitors SK&F 89976-A and SK&F 100330-A and four prototype antiepileptic drugs in mice and rats. Eur J Pharmacol 236:147–149

    Google Scholar 

  22. Prigol M, Brüning CA, Godoi B, Nogueira CW, Zeni G (2009) m-Trifluoromethyl-diphenyl diselenide attenuates pentylenetetrazole-induced seizures in mice by inhibiting GABA uptake in cerebral cortex slices. Pharmacol Rep 61:1127–1133

    PubMed  CAS  Google Scholar 

  23. Raol YH, Lynch DR, Brooks-Kayal AR (2001) Role of excitatory aminoacids in developmental epilepsies. Ment Retard Dev Disabil Res Rev 7:254–260

    Article  PubMed  CAS  Google Scholar 

  24. Beart PM, O’Shea RD (2007) Transporters for l-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    Article  PubMed  CAS  Google Scholar 

  25. Asconapé JJ (2010) The selection of antiepileptic drugs for the treatment of epilepsy in children and adults. Neurol Clin 28:843–852

    Article  PubMed  Google Scholar 

  26. Shorvon S (2011) The treatment of status epilepticus. Curr Opin Neurol 24:165–170

    Article  PubMed  CAS  Google Scholar 

  27. Luszczki JJ, Czuczwasr SJ (2004) Preclinical profile of combinations of some second-geration antiepileptic drugs: an isobolographic analysis. Epilepsia 45:895–907

    Article  PubMed  CAS  Google Scholar 

  28. Wood JD, Peesker SJ (1973) The role of GABA metabolism in the convulsant and anticonvulsant actions of aminooxyacetic acid. J Neurochem 20:379–387

    Article  PubMed  CAS  Google Scholar 

  29. Sonnewald U, Kortner TM, Qu H, Olstad E, Suñol C, Bak LK, Schousboe A, Waagepetersen HS (2006) Demonstration of extensive GABA synthesis in the small population of GAD positive neurons in cerebellar cultures by the use of pharmacological tools. Neurochem Int 48:572–578

    Article  PubMed  CAS  Google Scholar 

  30. Sherif FM, Ahmed SS (1995) Basic aspects of GABA-transaminase in neuropsychiatric disorders. Clin Biochem 28:145–154

    Article  PubMed  CAS  Google Scholar 

  31. Sills GJ (2003) Pre-clinical studies with the GABAergic compounds vigabatrin and tiagabine. Epileptic Disord 5:51–56

    PubMed  Google Scholar 

  32. Krogsgaard-Larsen P, Frolund B, Frydenvang K (2000) GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects. Curr Pharm Des 6:1193–1209

    Article  PubMed  CAS  Google Scholar 

  33. Maciel EN, Flores EMM, Rocha JBT, Folmer V (2003) Comparative deposition of diphenyl diselenide in liver, kidney, and brain of mice. Bull Environ Contam Toxicol 70:470–476

    Article  PubMed  CAS  Google Scholar 

  34. Prigol M, Schumacher RF, Nogueira CW, Zeni G (2009) Convulsant effect of diphenyl diselenide in rats and mice and its relationship to plasma levels. Toxicol Lett 189:35–39

    Article  PubMed  CAS  Google Scholar 

  35. Prigol M, Pinton S, Schumacher R, Nogueira CW, Zeni G (2010) Convulsant action of diphenyl diselenide in rat pups: measurement and correlation with plasma, liver and brain levels of compound. Arch Toxicol 84:373–378

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by UFSM and FAPERGS/CNPq (PRONEX) research Grant No. 10/0005-1 is gratefully acknowledged.

Conflict of interest

The Author(s) declare(s) that they have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Wayne Nogueira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, E.A., Gai, B.M., Souza, A.C.G. et al. Involvement of GABAergic and glutamatergic systems in the anticonvulsant activity of 3-alkynyl selenophene in 21 day-old rats. Mol Cell Biochem 365, 175–180 (2012). https://doi.org/10.1007/s11010-012-1257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1257-3

Keywords

Navigation