Skip to main content
Log in

Molecular characterization of the porcine MTPAP gene associated with meat quality traits: chromosome localization, expression distribution, and transcriptional regulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MTPAP (mitochondrial poly(A) polymerase) gene plays a role in stabilizing the level of mitochondrial mRNAs and controlling the poly(A) length of human mitochondrial mRNAs. In this study, 2,296 bp partial cDNA sequences of the porcine MTPAP gene were obtained, which contained 1,746 bp full-length coding regions flanked by a 500 bp partial 3′-UTR. The porcine MTPAP gene was assigned to SSC10q14-q16 using the radiation hybrid (IMpRH) panel and chromosome electric location methods. Q-PCR analysis showed that MTPAP was expressed in all analyzed tissues, and has higher expression in heart, liver, skeletal muscles, and fat. One single nucleotide polymorphism g.2421T>A in intron5 of MTPAP gene was identified and detected by DdeI PCR–RFLP. Association of the genotypes with economic traits showed that different genotypes were significantly associated with juiciness, individuals with genotype AT displayed a significantly higher juiciness compared to genotype TT. The C/EBPβ transcription factors was up-regulation the expression of MTPAP by analyzing a series of MTPAP promoter reporter constructs using the dual-luciferase assay system, it indicated that MTPAP gene maybe play a critical role in fat deposition regulation which is regulated by C/EBPβ transcription factor. These findings provide an important basis for further understanding of porcine MTPAP regulation and function in swine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tomecki R, Dmochowska A, Gewartowski K, Dziembowski A, Stepien PP (2004) Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase. Nucleic Acids Res 32:6001–6014

    Article  PubMed  CAS  Google Scholar 

  2. Nagaike T, Suzuki T, Katoh T, Ueda T (2005) Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria-specific poly(A) polymerase and polynucleotide phosphorylase. J Biol Chem 280:19721–19727

    Article  PubMed  CAS  Google Scholar 

  3. Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277:30409–30412

    Article  PubMed  CAS  Google Scholar 

  4. Reichert AS, Neupert W (2004) Mitochondriomics or what makes us breathe. Trends Genet 20:555–562

    Article  PubMed  CAS  Google Scholar 

  5. Xiao Q, Wu XL, Michal JJ, Reeves JJ, Busboom JR, Thorgaard GH, Jiang ZH (2006) A novel nuclear-encoded mitochondrial poly(A) polymerase PAPD1 is a potential candidate gene for the extreme obesity related phenotypes in mammals. Int J Biol Sci 2:171–178

    Article  PubMed  CAS  Google Scholar 

  6. Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, Beattie C, Schook L, Milan D, Gellin J (1998) Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 82:182–188

    Article  PubMed  CAS  Google Scholar 

  7. Milan D, Hawken R, Cabau C, Leroux S, Genet C, Lahbib Y, Tosser G, Robic A, Hatey F, Alexander L, Beattie C, Schook L, Yerle M, Gellin J (2000) IMpRH server: an RH mapping server available on the web. Bioinformatics 16:558–559

    Article  PubMed  CAS  Google Scholar 

  8. Cai W, Casey DS, Dekkers JCM (2008) Selection response and genetic parameters for residual feed intake in Yorkshire swine. J Anim Sci 86:287–298

    Article  PubMed  CAS  Google Scholar 

  9. Raabe T, Murthy KG, Manley JL (1994) Poly(A) polymerase contains multiple functional domains. Mol Cell Biol 14:2946–2957

    PubMed  CAS  Google Scholar 

  10. Thuresson AC, Astrom J, Astrom A, Gronvik KO, Virtanen A (1994) Multiple forms of poly(A) polymerases in human cells. Proc Natl Acad Sci 91:979–983

    Article  PubMed  CAS  Google Scholar 

  11. Kyriakopoulou CB, Nordvarg H, Virtanen A (2001) A novel nuclear human poly(A) polymerase (PAP), PAP gamma. J Biol Chem 276:33504–33511

    Article  PubMed  CAS  Google Scholar 

  12. Gado K, Domjan G, Kormos L, Falus A (2002) Functional significance of genetic abnormalities in multiple myeloma. Haematologia (Budap) 32:191–208

    Article  CAS  Google Scholar 

  13. Hager J, Dina C, Francke S, Dubois S, Houari M, Vatin V, Vaillant E, Lorentz N, Basdevant A, Clement K, Guy-Grand B, Froguel P (1998) A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nat Genet 20:304–308

    Article  PubMed  CAS  Google Scholar 

  14. Hinney A, Ziegler A, Oeffner F, Wedewardt C, Vogel M, Wulftange H, Geller F, Stubing K, Siegfried W, Goldschmidt HP, Remschmidt H, Hebebrand J (2000) Independent confirmation of a major locus for obesity on chromosome 10. J Clin Endocrinol Metab 85:2962–2965

    Article  PubMed  CAS  Google Scholar 

  15. Price RA, Li WD, Bernstein A, Crystal A, Golding EM, Weisberg SJ, Zuckerman WA (2001) A locus affecting obesity in human chromosome region 10p12. Diabetologia 44:363–366

    Article  PubMed  CAS  Google Scholar 

  16. Boutin P, Dina C, Vasseur F, Dubois S, Corset L, Seron K, Bekris L, Cabellon J, Neve B, Vasseur-Delannoy V, Chikri M, Charles MA, Clement K, Lernmark A, Froguel P (2003) GAD2 on chromosome 10p12 is a candidate gene for human obesity. PLoS Biol 1:E68

    Article  PubMed  Google Scholar 

  17. Eikelenboom G, Hoving-Bolink AH, Van Der Waal PG (1996) The eating quality of pork. 2. The influence of intramuscular fat. Fleischwirtschaft 76:517–518

    CAS  Google Scholar 

  18. Wood JD, Brown SN, Nute GR, Whittington FM, Perry AM, Johnson SP, Enser MB (1996) Effects of breed, feed level and conditioning time on the tenderness of pork. Meat Sci 44:105–112

    Article  PubMed  CAS  Google Scholar 

  19. Park B, Cho S, Kim J, Yoo Y, Lee J, Ahn Ch, Kim Y, Yun S (2001) Carcass composition and meat quality by intramuscular fat contents in Longissimus dorsi of Hanwoo. In: Materials of 47th international congress of meat science and technology, August 26th–31st 2001, Kraków, pp 116–118

  20. Hocquette JF, Gondret F, Baéza E, Médale F, Jurie C, Pethick DW (2010) Intramuscular fat content in meat-producing animals: development genetic and nutritional control and identification of putative markers. Animal 4(2):303–319

    Article  CAS  Google Scholar 

  21. Enfält AC, Lundström K, Hansson I, Lundeheim N, Nyström PE (1997) Effects of outdoor rearing and sire breed (Duroc or Yorkshire) on carcass composition and sensory and technological meat quality. Meat Sci 45:1–15

    Article  PubMed  Google Scholar 

  22. Bredahl L, Grunert KG, Fertin C (1998) Relating consumer perceptions of pork quality to physical product characteristics. Food Qual Prefer 4:273–281

    Article  Google Scholar 

  23. Resurreccion AVA (2004) Sensory aspects of consumer choices for meat and meat products. Meat Sci 66:11–20

    Article  PubMed  CAS  Google Scholar 

  24. Fernandez X, Monin G, Talmant A, Mourot J, Lebret B (1999) Influence of intramuscular fat content on the quality of pig meat—1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum. Meat Sci 53:59–65

    Article  PubMed  CAS  Google Scholar 

  25. Tomasz D, Tomasz B, Jerzy D (2005) Quality of pork with a different intramuscular fat (IMF) content. Pol J Food Nutr Sci 1:31–36

    Google Scholar 

  26. Darlington GJ, Ross SE, MacDougald OA (1998) The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273:30057–30060

    Article  PubMed  CAS  Google Scholar 

  27. Poli V (1998) The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J Biol Chem 273:29279–29282

    Article  PubMed  CAS  Google Scholar 

  28. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273

    Article  PubMed  CAS  Google Scholar 

  29. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Natl Rev Mol Cell Biol 7:885–896

    Article  CAS  Google Scholar 

  30. Tang QQ, Otto TC, Lane MD (2003) CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci USA 100:850–855

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the numbers of Dr Rothschild’s Lab for their assistance on this research and Dr. Martine Yerle for providing the RH panel (INRA, Castanet-Tolosan, France). The study was supported by the National Transgenic Key Program (2009ZX08012-015B) and Scientific Innovation of University Students Foundation (SRF, A08041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang Liu.

Additional information

Xuelei Han and Tengfei Jiang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Jiang, T., Yu, L. et al. Molecular characterization of the porcine MTPAP gene associated with meat quality traits: chromosome localization, expression distribution, and transcriptional regulation. Mol Cell Biochem 364, 173–180 (2012). https://doi.org/10.1007/s11010-011-1216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1216-4

Keywords

Navigation