Skip to main content
Log in

Influence of atorvastatin on the pharmacodynamic and pharmacokinetic activity of repaglinide in rats and rabbits

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Dyslipidemia is common in patients with type 2 diabetes. Statins are used as the first choice in treatment of diabetic dyslipidemia. Atorvastatin represents a first-line treatment option, alongside other hydroxyl methylglutaryl coenzyme A reductase inhibitors. Repaglinide is a short-acting, oral, insulin secretagogue that is used in the treatment of type 2 diabetes mellitus. Both the category of drugs undergo extensive metabolism with cytochrome enzyme system. This may lead to drug–drug interaction problems with altered repaglinide activity which is cautious. Repaglinide/atorvastatin/atorvastatin + repaglinide were administered orally to normal, diabetic rats, and to normal rabbits. Blood samples were collected at different time intervals and were analyzed for blood glucose by GOD–POD method using commercial glucose kits and repaglinide estimation in plasma by HPLC method. Diabetes was induced by alloxan 100 mg/kg body weight administered by I.P route. In the presence of atorvastatin, repaglinide activity was increased and maintained for longer period in diabetic rats compared with repaglinide matching control. The present study concludes co-administration of atorvastatin was found to improve repaglinide responses significantly in diabetic rats and improved glucose metabolism of atorvastatin played an important role and increased repaglinide levels by competitive CYP 3A4 enzyme inhibition by atorvastatin could be added advantage for anti hyperglycemic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HMG-CoA:

Hydroxyl methylglutaryl coenzyme A

ATP:

Adenosine tri phosphate

GOD/POD method:

Glucose oxidase and peroxidase method

SEM:

Standard error mean

References

  1. Marbury TM, Ruckle JL, Hatorp V, Andersen MP, Nielsen KK, Huang WC, Strange P (2000) Pharmacokinetic of repaglinide in subjects with renal impairment. Clin Pharmacol Ther 67:7–15

    Article  PubMed  CAS  Google Scholar 

  2. Gromada J, Dissing S, Kofod H, Frokjaer-Jensen J (1995) Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in beta TC3 cells and rat pancreatic beta cells. Diabetologia 38:1025–1032

    Article  PubMed  CAS  Google Scholar 

  3. Campbell IW (2005) Nateglinide—current and future role in the treatment of patients with type 2 diabetes mellitus. Int J Clin Pract 59(10):1218–1228

    Article  PubMed  CAS  Google Scholar 

  4. Tankova T, Koev D, Dakovska L, Kirilov G (2003) The effect of repaglinide on insulin secretion and oxidative stress in type 2 diabetic patients. Diabetes Res Clin Pract 59(1):43–49

    Article  PubMed  CAS  Google Scholar 

  5. Eckel RH, Wassef M, Chait A et al (2002) Prevention conference VI: diabetes and cardiovascular disease: writing group II: pathogenesis of atherosclerosis in diabetes. Circulation 105:e138–e143

    Article  PubMed  Google Scholar 

  6. American Diabetes Association (2002) Management of dyslipidemia in adults with diabetes. Diabetes Care 25(Suppl. 1):S74–S77

    Google Scholar 

  7. Wilde Michelle I, Spencer Caroline M (1998) Management of dyslipidemias the potential role of atorvastatin. Dis Manage Health Outcomes 3:293–311

    Article  Google Scholar 

  8. Nawrocki JW, Weiss SR, Davidson MH et al (1995) Reduction of LDL cholesterol by 25–60% in patients with primary hypercholesterolemia by atorvastatin, a new HMG-CoA reductase inhibitor. Arterioscler Thromb Vasc Biol 15:678–682

    Article  PubMed  CAS  Google Scholar 

  9. Bakker-Arkema RG, Davidson MH, Goldstein RJ et al (1996) Efficacy and safety of a new H MG-CoA reductase inhibitor, atorvastatin, in patients with hypertriglyceridemia. JAMA 275:128–133

    Article  PubMed  CAS  Google Scholar 

  10. Jones P, Kafonek S, Laurora I, Hunninghake D (1998) Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the CURVES study). Am J Cardiol 81:582–587

    Article  PubMed  CAS  Google Scholar 

  11. Satyanarayana S, Kilari EK (2006) Influence of nicorandil on the pharmacodynamics and pharmacokinetics of gliclazide in rats and rabbits. Mol Cell Biochem 291:101–105

    Article  PubMed  CAS  Google Scholar 

  12. Plosker Greg L, Figgitt David P (2004) Repaglinide: a pharmacoeconomic review of its use in type 2 diabetes mellitus. Pharmacoeconomics 22(6):389–411

    Article  PubMed  Google Scholar 

  13. Anne Kelly, Spratt DO (2009) Managing diabetic dyslipidemia: aggressive approach. J Am Osteopath Assoc 109(suppl 1):S2–S7

    Google Scholar 

  14. Paget GE, Barnes JM (1964) Toxicity tests. In: Lawrence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic Press, London, pp 140–161

    Google Scholar 

  15. Lau Yvonne Y, Okochi Hideaki, Huang Yong, Benet Leslie Z (2006) Pharmacokinetics of atorvastatin and its hydroxy metabolites in rats and the effects of concomitant rifampicin single doses: relevance of first-pass effect from hepatic uptake transporters, and intestinal and hepatic metabolism. Drug Metab Dispos 34:1175–1181. doi:10.1124/dmd.105.009076

    Article  PubMed  CAS  Google Scholar 

  16. Mark M, Grell W (1997) Hypoglycaemic effects of the novel antidiabetic agent repaglinide in rats and dogs. Br J Pharmacol 121(8):1597–1604

    Article  PubMed  CAS  Google Scholar 

  17. Heikkila RE (1977) The prevention of alloxan-induced diabetes in mice by dimethyl sulfoxide. Eur J Pharmacol 44(2):191–193

    Article  PubMed  CAS  Google Scholar 

  18. Riley V (1960) Adaptation of orbital bleeding technique to rapid serial blood studies. Proc Soc Exp Biol Med 104:751–754

    PubMed  CAS  Google Scholar 

  19. Trinder P (1969) Determination of blood glucose using an oxidase peroxidase system with a non carcinogenic chemogen. J Clin Pathol 22:158–161

    Article  PubMed  CAS  Google Scholar 

  20. El-Houssieny BM, Wahman LF, Arafa NM (2010) Bioavailability and biological activity of liquisolid compact formula of repaglinide and its effect on glucose tolerance in rabbits. Biosci Trends 4(1):17–24

    PubMed  CAS  Google Scholar 

  21. Mandic Z, Gabelica V (2006) Ionization, lipophilicity, and solubility properties of repaglinide. J Pharm Biomed Anal 41:866–871

    Article  PubMed  CAS  Google Scholar 

  22. van Heiningen PN, Hatorp V, Kramer Nielsen K et al (1999) Absorption, metabolism, and excretion of a single oral dose of 14C-repaglinide during repaglinide multiple dosing. Eur J Clin Pharmacol 55:521–525

    Article  PubMed  Google Scholar 

  23. Nielsen KK, Bjornsdottir I, Andersen JV, Thomsen MS, Hansen KT (2001) Pharmacokinetics and metabolism of 14C-repaglinide after a single oral dose to healthy Japanese and Caucasian males. Clin Pharmacol Ther 69:P88

    Google Scholar 

  24. Chong PH, Seeger JD, Franklin C (2001) Clinically relevant differences between the statins: implications for therapeutic selection. Am J Med 111:390–400

    Article  PubMed  CAS  Google Scholar 

  25. Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing KF, Kollman PA, Benet LZ, Christians U (2000) Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 28:1369–1378

    PubMed  CAS  Google Scholar 

  26. Lau Wei C, Waskell LA et al (2003) Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation a new drug–drug interaction. Circulation 107:32–37. doi:10.1161/01.CIR.0000047060.60595.CC

    Article  PubMed  CAS  Google Scholar 

  27. Mc Donnell CG, Shorten G, Van Pelt FNAM (2005) Effect of atorvastatin and fluvastatin on the metabolism of midazolam by cytochrome P450 in vitro. Anaesthesia 60:747–753. doi:10.1111/j.1365-2044.2005.04110.x

    Article  PubMed  CAS  Google Scholar 

  28. Emami J, Gerstein HC, Pasutto FM, Jamali F (1999) Insulin sparing effect of HCQ in diabetic rats is concentration dependent. Can J Physiol Pharmacol 77:118–123

    Article  PubMed  CAS  Google Scholar 

  29. Suzuki M, Kakuta H, Takahashi A, Shimano H, Tada-Iida K, Yokoo T et al (2005) Effects of atorvastatin on glucose metabolism and insulin resistance in KK/Ay mice. J Atheroscler Thromb 12:77–84

    Article  PubMed  CAS  Google Scholar 

  30. Pareek Anil et al (2009) Effect of atorvastatin and hydroxychloroquine combination on blood glucose in alloxan-induced diabetic rats. Indian J Pharmacol 3:125–128

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Shekar Sunkoju (Biostatistian, Max Neeman International, New Delhi-110020) for assistance in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makula Chandra Sekhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekhar, M.C., Reddy, P.J.C. Influence of atorvastatin on the pharmacodynamic and pharmacokinetic activity of repaglinide in rats and rabbits. Mol Cell Biochem 364, 159–164 (2012). https://doi.org/10.1007/s11010-011-1214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1214-6

Keywords

Navigation