Skip to main content

Advertisement

Log in

Impact of XPD gene polymorphism on risk of prostate cancer on north Indian population

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Prostate cancer is the second most diagnosed cancer in men next to skin cancer in the developed world. Risk of disease varies most prominently with age, ethnicity, family history, and diet. Genetic polymorphism of some genes has been implicated in increasing the risk. The XPD (Xeroderma pigmentosum group D) gene codes for a DNA helicase involved in transcription and nucleotide excision repair. The aim of this study is to evaluate the effect of XPD 751 Lys/Gln polymorphism on risk of prostate cancer on north Indian patients. Blood sample from 150 prostate cancer patients, 150 from Prostate Hyper Plasia and equal number of samples from healthy control groups was collected from North India. The polymerase chain reaction and restrictive fragment length polymorphism techniques were implemented. Statistically non-significant increase risk of prostate cancer was observed with patients having Gln/Gln genotype (OR 1.62, 95% CI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics. CA Cancer j clin 58(2):71–96

    Article  PubMed  Google Scholar 

  2. Grant WB (2004) A multicountry ecologic study of risk and risk reduction factors for prostate cancer mortality. Eur Urol 45:271–279

    Article  PubMed  Google Scholar 

  3. UK Prostate cancer statistics (2008) Cancer Research UK. http://info.cancerresearchuk.org/. Accessed 23/12/2009

  4. Tannock I, de Wit R, Berry W (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512

    Article  PubMed  CAS  Google Scholar 

  5. Yeole BB, Jussawala DJ (1998) An assessment of reliability and completeness of Bombay cancer registry in India. Indian J Cancer 25:177–190

    Google Scholar 

  6. Clinton SK (1998) Diet, nutrition, and prostate cancer. Annu Rev Nutr 18:413–440

    Article  PubMed  CAS  Google Scholar 

  7. Pienta KJ, Esper PS (1993) Risk factors for prostate cancer. Ann Intern Med 118:793–803

    PubMed  CAS  Google Scholar 

  8. Poirier MC, Weston A (2000) DNA damage, DNA repair, and mutagenesis. In: Bertino JR (ed) Encyclopedia of cancer. Academic Press, Boston, pp 79–87

    Google Scholar 

  9. Ford D, Easton DF, Bishop DT, Narod SA, Goldger DE (1994) Risk of cancer in BRCA1 mutation carriers. Lancet 343:692–695

    Article  PubMed  CAS  Google Scholar 

  10. Weber CA, Salazar EP, Stewart SA (1990) ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J 9:1437–1447

    PubMed  CAS  Google Scholar 

  11. Itin PH, Sarasin A, Pittelkow MR (2001) Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol. 44:891–920

    Article  PubMed  CAS  Google Scholar 

  12. Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G, Witte JS (2004) DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 13:23–29

    Article  PubMed  CAS  Google Scholar 

  13. Shen MR, Jones IM, Mohrenweiser H (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58:604–608

    PubMed  CAS  Google Scholar 

  14. Stern MC, Umbach DM, Lunn RM, Taylor JA (2002) DNA repair gene XRCC3 codon 241 polymorphism, its interaction with smoking and XRCC1 polymorphisms, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 11:939–943

    PubMed  CAS  Google Scholar 

  15. Butkiewicz D, Rusin M, Enewold L, Shields PG, Chorazy M, Harris CC (2001) Genetic polymorphisms in DNA repair genes and risk of lung cancer. Carcinogenesis 22:593–597

    Article  PubMed  CAS  Google Scholar 

  16. Rybicki BA, Nock NL, Savera AT, Tang D, Rundl A (2006) Polycyclic aromatic hydrocarbon-DNA adduct formation in prostate carcinogenesis. Cancer Lett 239:157–167

    Article  PubMed  CAS  Google Scholar 

  17. Agalliu I, Kwon EM, Salinas CA, Koopmeiners JS, Ostrander EA, Stanford JL (2010) Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study. Cancer Causes Control 21:289–300

    Article  PubMed  Google Scholar 

  18. Wood RD, Mitchell M, Sgouros J, Lindahl T, Human (2001) Human DNA repair genes. Science 291:1284–1289

    Article  PubMed  CAS  Google Scholar 

  19. Braithwaite E, Wu X, Wang Z (1998) Repair of DNA lesions induced by polycyclic aromatic hydrocarbons in human cell-free extracts: involvement of two excision repair mechanisms in vitro. Carcinogenesis 19:1239–1246

    Article  PubMed  CAS  Google Scholar 

  20. Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193:3–34

    Article  PubMed  CAS  Google Scholar 

  21. Bau DT, Wu HC, Chiu C, Lin CC, Hsu CM, Wang CL (2007) Association of XPD polymorphisms with prostate cancer in Taiwanese patients. Anticancer Res. 27:2893–2896

    PubMed  CAS  Google Scholar 

  22. Gangwar R, Manchanda PK, Mittal RD (2009) Implications of XRCC1, XPD and APE1 gene polymorphism in North Indian population: a comparative approach in different ethnic groups worldwide. Genetica 136:163–169

    Article  PubMed  CAS  Google Scholar 

  23. Hu JJ, Hall MC, Grossman L, Hedayati M, McCullough DL, Lohman K (2004) Deficient nucleotide excision repair capacity enhances human prostate cancer risk. Cancer Res 64:1197–1201

    Article  PubMed  CAS  Google Scholar 

  24. U.S. Department of Health and Human Services: The Health Consequences of Smoking: A Report of the Surgeon General. Atlanta, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2004

  25. Hickey K, Do KA, Green A (2001) Smoking and prostate cancer. Epidemiol Rev 23:115–125

    Article  PubMed  CAS  Google Scholar 

  26. Rohrmann S, Genkinger JM, Burke A, Helzlsouer KJ, Comstock GW, Alberg AJ, Platz ES (2007) Smoking and risk of fatal prostate cancer in a prospective US study. Urology 69:721–725

    Article  PubMed  Google Scholar 

  27. Butler LM, Wang R, Wong AS, Koh WP, Yu MC (2009) Cigarette smoking and risk of prostate cancer among Singapore Chinese. Cancer Causes Control 20:1967–1974

    Article  PubMed  Google Scholar 

  28. Sesso HD, Paffenbarger RS, Lee IM (2001) Alcohol consumption and risk of prostate cancer; The Harvard Alumni health study. Int J Epidemol 30:749–755

    Article  CAS  Google Scholar 

  29. Moller JO, Paine SL, McMichael AJ, Ewertz M, Schottenfeld D, Fraumeni JF (1996) Cancer epidemiology and prevention, 2nd edn. New York, Oxford, pp 290–318

    Google Scholar 

  30. Dennis LK, Hayes RB (2001) Alcohol and prostate cancer. Epidemiol Rev. 23:110–114

    Article  PubMed  CAS  Google Scholar 

  31. Platz EA, Leitzmann MF, Rim EB, Willett WC, Giovannucci E (2003) Alcohol intake, drinking patterns, and risk of prostate cancer in a large prospective cohort study. Am J Epidemiol 159:444–453

    Article  Google Scholar 

  32. Albertsen K, Gronbaek M (2002) Does amount or type of alcohol influence the risk of prostate cancer? Prostate 52:297–304

    Article  PubMed  Google Scholar 

  33. Lund TI, Johnsen R, Vatten LJ (2000) Socio-economic and lifestyle factors associated with the risk of prostate cancer. Br J Cancer 8:1358–1363

    Google Scholar 

  34. Ellison LF (2000) Tea and other beverage consumption and prostate cancer risk: a Canadian retrospective cohort study. Eur J Cancer Prev 9:125–130

    Article  PubMed  CAS  Google Scholar 

  35. Schoonen WM, Salinas CA, Kiemeney LA, Stanford JL (2005) Alcohol consumption and risk of prostate cancer in middle-aged men. Int J Cancer 113:133–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors of this article are grateful for the clinical staff at the Department of Urology in postgraduate education and medical research, Chandigarh, India, for the kind assistant provided during sample collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranbir Chander Sobti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobti, R.C., Berhane, N., Melese, S. et al. Impact of XPD gene polymorphism on risk of prostate cancer on north Indian population. Mol Cell Biochem 362, 263–268 (2012). https://doi.org/10.1007/s11010-011-1152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1152-3

Keywords

Navigation