Skip to main content
Log in

Chronic mild hyperhomocysteinemia alters ectonucleotidase activities and gene expression of ecto-5′-nucleotidase/CD73 in rat lymphocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Since mild hyperhomocysteinemia is a risk factor for cardiovascular and cerebral diseases and extracellular nucleotides/nucleosides, which are controlled by the enzymatic action of ectonucleotidases, can induce an immune response, in the present study, we investigated the effect of chronic mild hyperhomocysteinemia on ectonucleotidase activities and expression in lymphocytes from mesenteric lymph nodes and serum of adult rats. For the chronic chemically induced mild hyperhomocysteinemia, Hcy (0.03 μmol/g of body weight) or saline (control) were administered subcutaneously from the 30th to the 60th day of life. Results showed that homocysteine significantly decreased ATP, ADP, and AMP hydrolysis in lymphocytes of adult rats. E-NTPDases transcriptions were not affected, while the ecto-5′-nucleotidase transcription was significantly decreased in mesenteric lymph nodes of hyperhomocysteinemic rats. ATP, ADP, and AMP hydrolysis were not affected by homocysteine in rat serum. Our findings suggest that Hcy in levels similar to considered risk factor to development of vascular diseases modulates the ectonucleotidases, which could lead to a pro-inflammatory status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Williams KT, Schalinske KL (2010) Homocysteine metabolism and its relation to health and disease. Biofactors 36:19–24

    PubMed  CAS  Google Scholar 

  2. Hansrani M, Gillespie JI, Stansby G (2002) Homocysteine in myointimal hyperplasia. Eur J Vasc Endovasc Surg 23:3–10

    Article  PubMed  CAS  Google Scholar 

  3. Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270:2693–2698

    Article  PubMed  CAS  Google Scholar 

  4. Jacques PF, Rosenberg IH, Rogers G, Selhub J, Bowman BA, Gunter EW, Wright JD, Johnson CL (1999) Serum total homocysteine concentrations in adolescent and adult Americans: results from the third National Health and Nutrition Examination Survey. Am J Clin Nutr 69:482–489

    PubMed  CAS  Google Scholar 

  5. Lentz SR, Haynes WG (2004) Homocysteine: is it a clinically important cardiovascular risk factor? Cleve Clin J Med 71:729–734

    Article  PubMed  Google Scholar 

  6. Balogh E, Bereczky Z, Katona E, Kőszegi Z, Edes I, Muszbek L, Czuriga I (2011) Interaction between homocysteine and lipoprotein(a) increases the prevalence of coronary artery disease/myocardial infarction in women: a case-control study. Thromb Res (in press)

  7. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274:1049–1057

    Article  PubMed  CAS  Google Scholar 

  8. Maron BA, Loscalzo J (2009) The treatment of hyperhomocysteinemia. Annu Rev Med 60:39–54

    Article  PubMed  CAS  Google Scholar 

  9. Papatheodorou L, Weiss N (2007) Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signal 9:1941–1958

    Article  PubMed  CAS  Google Scholar 

  10. Scherer EB, da Cunha AA, Kolling J, da Cunha MJ, Schmitz F, Sitta A, Lima DD, Delwing D, Vargas CR, Wyse AT (2011) Development of an animal model for chronic mild hyperhomocysteinemia and its response to oxidative damage. Int J Dev Neurosci 29:693–699

    Article  PubMed  CAS  Google Scholar 

  11. Weiss N, Keller C, Hoffmann U, Loscalzo J (2002) Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 7:227–239

    Article  PubMed  Google Scholar 

  12. Herrmann W, Obeid R (2011) Homocysteine: a biomarker in neurodegenerative diseases. Clin Chem Lab Med 49:435–441

    Article  PubMed  CAS  Google Scholar 

  13. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430

    Article  PubMed  CAS  Google Scholar 

  14. Yegutkin GG (2008) Nucleotide-and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  PubMed  CAS  Google Scholar 

  15. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 276:125–132

    Article  PubMed  CAS  Google Scholar 

  16. Sullivan GW (2003) Adenosine A2A receptor agonists as anti-inflammatory agents. Curr Opin Investig Drugs 4:1313–1319

    PubMed  CAS  Google Scholar 

  17. Bigonnesse F, Lévesque SA, Kukulski F, Lecka J, Robson SC, Fernandes MJ, Sévigny J (2004) Cloning and characterization of mouse nucleoside triphosphate diphosphohydrolase-8. Biochemistry 43:5511–5519

    Article  PubMed  CAS  Google Scholar 

  18. Zhang Q, Zeng X, Guo J, Wang X (2001) Effects of homocysteine on murine splenic B lymphocyte proliferation and its signal trasduction mechanism. Cardiovasc Res 52:328–336

    Article  PubMed  CAS  Google Scholar 

  19. Dawson H, Collins G, Pyle R, Deep-Dixit V, Taub DD (2004) The immunoregulatory effects of homocysteine and its intermediates on T-lymphocyte function. Mech Ageing Dev 125:107–110

    Article  PubMed  CAS  Google Scholar 

  20. Böhmer AE, Pochmann D, Sarkis JJ (2006) In vitro effect of homocysteine on nucleotide hydrolysis by blood serum from adult rats. Chem Biol Interact 160:159–164

    Article  PubMed  Google Scholar 

  21. Wu GY, Field CJ, Marliss EB (1991) Glutamine and glucose metabolism in rat splenocytes and mesenteric lymph node lymphocytes. Am J Physiol 260:E141–E147

    PubMed  CAS  Google Scholar 

  22. Vuaden FC, de Paula Cognato G, Bonorino C, Bogo MR, Sarkis JJ, Bonan CD (2007) Lipopolysaccharide alters nucleotidase activities from lymphocytes and serum of rats. Life Sci 80:1784–1791

    Article  PubMed  CAS  Google Scholar 

  23. Oses JP, Cardoso CM, Germano RA, Kirst IB, Rücker B, Fürstenau CR, Wink MR, Bonan CD, Battastini AM, Sarkis JJ (2004) Soluble NTPDase: an additional system of nucleotide hydrolysis in rat blood serum. Life Sci 74:3275–3284

    Article  PubMed  Google Scholar 

  24. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  25. Yegutkin GG (1997) Kinectic analysis of enzymatic hydrolysis of ATP in human and rat blood serum. Biochemistry (Mosc) 62:619–622

    CAS  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  27. De Bree A, Verschuren WM, Kromhout D, Kluijtmans LA, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54:599–618

    Article  PubMed  Google Scholar 

  28. Benninger DH, Herrmann FR, Georgiadis D, Kretschmer R, Sarikaya H, Schiller A, Baumgartner RW (2009) Increased prevalence of hyperhomocysteinemia in cervical artery dissection causing stroke: a case-control study. Cerebrovasc Dis 27:241–246

    Article  PubMed  CAS  Google Scholar 

  29. Upchurch GR Jr, Welch GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF Jr, Loscalzo J (1997) Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017

    Article  PubMed  CAS  Google Scholar 

  30. Heydrick SJ, Weiss N, Thomas SR, Cap AP, Pimentel DR, Loscalzo J, Keaney JF Jr (2004) L-Homocysteine and L-homocystine stereospecifically induce endothelial nitric oxide synthase-dependent lipid peroxidation in endothelial cells. Free Radic Biol Med 36:632–640

    Article  PubMed  CAS  Google Scholar 

  31. Ravaglia G, Forti P, Maioli F, Servadei L, Martelli M, Arnone G, Talerico T, Zoli M, Mariani E (2004) Plasma homocysteine and inflammation in elderly patients with cardiovascular disease and dementia. Exp Gerontol 39:443–450

    Article  PubMed  CAS  Google Scholar 

  32. Gori AM, Corsi AM, Fedi S, Gazzini A, Sofi F, Bartali B, Bandinelli S, Gensini GF, Abbate R, Ferrucci L (2005) A proinflammatory state is associated with hyperhomocysteinemia in the elderly. Am J Clin Nutr 82:335–341

    PubMed  CAS  Google Scholar 

  33. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3:e2599

    Article  PubMed  Google Scholar 

  34. Di Virgilio F, Ceruti S, Bramanti P, Abbracchio MP (2009) Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 32:79–87

    Article  PubMed  CAS  Google Scholar 

  35. Di Virgilio F, Borea PA, Illes P (2001) P2 receptors meet the immune system. Trends Pharmacol Sci 22:5–7

    Article  PubMed  CAS  Google Scholar 

  36. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    Article  PubMed  CAS  Google Scholar 

  37. Yu HB, Finlay BB (2008) The caspase-1 inflammasome: a pilot of innate immune responses. Cell Host Microbe 4:198–208

    Article  PubMed  CAS  Google Scholar 

  38. Piro M, Giubilato G, Pinnelli M, Giordano Sciacca P, Biasucci LM (2005) Endothelium and inflammation. Panminerva Med 47:75–80

    PubMed  CAS  Google Scholar 

  39. Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5:712–721

    Article  PubMed  CAS  Google Scholar 

  40. Nedeljkovic N, Banjac A, Horvat A, Stojiljkovic M, Nikezic G (2005) Developmental profile of NTPDase activity in synaptic plasma membranes isolated from rat cerebral cortex. Int J Dev Neurosci 23:45–51

    Article  PubMed  CAS  Google Scholar 

  41. Cunha RA (2001) Regulation of the ecto-nucleotidase pathway in rat hippocampal nerve terminals. Neurochem Res 26:979–991

    Article  PubMed  CAS  Google Scholar 

  42. Riksen NP, Rongen GA, Boers GH, Blom HJ, van den Broek PH, Smits P (2005) Enhanced cellular adenosine uptake limits adenosine receptor stimulation in patients with hyperhomocysteinemia. Arterioscler Thromb Vasc Biol 25:109–114

    PubMed  CAS  Google Scholar 

  43. Tabrizchi R, Bedi S (2001) Pharmacology of adenosine receptors in the vasculature. Pharmacol Ther 91:133–147

    Article  PubMed  CAS  Google Scholar 

  44. Deguchi H, Takeya H, Urano H, Gabazza EC, Zhou H, Suzuki K (1998) Adenosine regulates tissue factor expression on endothelial cells. Thromb Res 91:57–64

    Google Scholar 

  45. Maggirwar SB, Dhanraj DN, Somani SM, Ramkumar V (1994) Adenosine acts as an endogenous activator of the cellular antioxidant defense system. Biochem Biophys Res Commun 201:508–515

    Article  PubMed  CAS  Google Scholar 

  46. Marone G, Petracca R, Vigorita S, Genovese A, Casolaro V (1992) Adenosine receptors on human leukocytes. IV. Characterization of an A1/Ri receptor. Int J Clin Lab Res 22:235–242

    Article  PubMed  CAS  Google Scholar 

  47. Yang Z, Day YJ, Toufektsian MC, Xu Y, Ramos SI, Marshall MA, French BA, Linden J (2006) Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 114:2056–2064

    Article  PubMed  CAS  Google Scholar 

  48. Pinhal-Enfield G, Ramanathan M, Hasko G, Vogel SN, Salzman AL, Boons GJ, Leibovich SJ (2003) An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. Am J Pathol 163:711–721

    Article  PubMed  CAS  Google Scholar 

  49. Lappas CM, Rieger JM, Linden J (2005) A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol 174:1073–1080

    PubMed  CAS  Google Scholar 

  50. Vuaden FC, Savio LE, Bastos CM, Bogo MR, Bonan CD (2011) Adenosine A(2A) receptor agonist (CGS-21680) prevents endotoxin-induced effects on nucleotidase activities in mouse lymphocytes. Eur J Pharmacol 651:212–217

    Article  PubMed  CAS  Google Scholar 

  51. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn-Schmiedeberg’s Arch Pharmacol 362:299–309

    Article  CAS  Google Scholar 

  52. Hantgan RR (1984) A study of the kinetics of ADP-triggered platelet shape change. Blood 64:896–906

    PubMed  CAS  Google Scholar 

  53. Bodin P, Burnstock G (1996) ATP-stimulated release of ATP by human endothelial cells. J Cardiovas Pharmacol 27:872–875

    Article  CAS  Google Scholar 

  54. Dubyak GR (2000) Purinergic signaling at immunological synapses. J Auton Nerv Syst 81:64–68

    Article  PubMed  CAS  Google Scholar 

  55. Yegutkin G, Bodin P, Burnstock G (2000) Effect of shear stress on the release of soluble ecto-enzymes ATPase and 5 V-nucleotidase along with endogenous ATP from vascular endothelial cells. Br J Pharmacol 129:921–926

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq–Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, E.B.S., Savio, L.E.B., Vuaden, F.C. et al. Chronic mild hyperhomocysteinemia alters ectonucleotidase activities and gene expression of ecto-5′-nucleotidase/CD73 in rat lymphocytes. Mol Cell Biochem 362, 187–194 (2012). https://doi.org/10.1007/s11010-011-1141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1141-6

Keywords

Navigation