Skip to main content
Log in

Activity of tumor necrosis factor-α blocked by phytoglycoprotein (38 kDa) at initiation stage in N-nitrosodiethylamine-induced ICR mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma is becoming one of the most prominent types of cancer in the world. Recently, from Styrax japonica Siebold et al. Zuccarini (SJSZ), we isolated a glycoprotein which consists of carbohydrate moiety (52.64%) and protein moiety (42.35%). We evaluated whether SJSZ glycoprotein prevents hepatocarcinogenesis induced by N-nitrosodiethylamine (DEN). The purpose of this study was to evaluate the effect of SJSZ glycoprotein in DEN-induced hepatocarcinogenesis in ICR mice. To know chemopreventive effect of SJSZ glycoprotein on hepatocarcinogenesis, ICR mice were intraperitoneally injected with N-nitrosodiethylamine (DEN, 10 mg/kg) for 7 weeks. After sacrifice, we evaluated indicators of liver tissue damage [the activities of lactate dehydrogenase (LDH) and alanine aminotransferase (ALT), and thiobarbituric acid reactive substances (TBARS)], antioxidative enzymes [activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], and initiating hepatocarcinogenic indicator [heat shock protein (HSP) 27 and 70] and hepatocarcinogenic signals [protein kinase C (PKC), extracellular signal-regulating kinase (ERK) 1/2, nuclear factor (NF)-κB (p50 and p65) and tumor necrosis factor-α (TNF-α)] using biochemical methods, immunoblot analysis, and RT-PCR. The results obtained from this study revealed that SJSZ glycoprotein (10 mg/kg, BW) decreased the levels of LDH, ALT, and TBARS, whereas the activities of SOD, GPx, and CAT increased in the DEN-induced ICR mice. With respect to the hepatocarcinogenic indicator and hepatocarcinogenic signals, HSP27, HSP70, PKC, ERK1/2, NF-κB (p50 and p65), and TNF-α, activity decreased. Hence, SJSZ glycoprotein might prevent expression of HSP27 and HSP70 by DEN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, Schirmacher P, McCombie WR, Wigler M, Hicks J, Hannon GJ, Powers S, Lowe SW (2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864

    Article  PubMed  CAS  Google Scholar 

  2. Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990

    Article  PubMed  CAS  Google Scholar 

  3. Jeena KJ, Joy KL, Kuttan R (1999) Effect of Emblica officinalis, Phyllanthus amarus and Picrorrhiza kurroa on N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Lett 136:11–16

    Article  PubMed  CAS  Google Scholar 

  4. Loeppky RN (1994) Nitrosamine and nitroso compound chemistry and biochemistry, ACS Symposium Series, vol. 553. American Chemical Society, Washington, DC, pp 1–12

    Google Scholar 

  5. Heindryckx F, Colle I, Van Vlierberghe H (2009) Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol 90:367–386

    Article  PubMed  CAS  Google Scholar 

  6. Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM (2008) Experimental models of hepatocellular carcinoma. J Hepatol 48:858–879

    Article  PubMed  CAS  Google Scholar 

  7. Nishigori C (2006) Cellular aspects of photocarcinogenesis. Photochem Photobiol Sci 5:208–214

    Article  PubMed  CAS  Google Scholar 

  8. Sundaresan S, Subramanian P (2003) S-allylcysteine inhibits circulatory lipid peroxidation and promotes antioxidants in N-nitrosodiethylamine-induced carcinogenesis. Pol J Pharmacol 55:37–42

    PubMed  CAS  Google Scholar 

  9. Joo M, Chi JG, Lee H (2005) Expressions of HSP70 and HSP27 in hepatocellular carcinoma. J Korean Med Sci 20:829–834

    Article  PubMed  CAS  Google Scholar 

  10. Faucher C, Capdevielle J, Canal I, Ferrara P, Mazarguil H, McGuire WL, Darbon JM (1993) The 28-kDa protein whose phosphorylation is induced by protein kinase C activators in MCF-7 cells belongs to the family of low molecular mass heat shock proteins and is the estrogen-regulated 24-kDa protein. J Biol Chem 268:15168–15173

    PubMed  CAS  Google Scholar 

  11. Takai S, Matsushima-Nishiwaki R, Tokuda H, Yasuda E, Toyoda H, Kaneoka Y, Yamaguchi A, Kumada T, Kozawa O (2007) Protein kinase C delta regulates the phosphorylation of heat shock protein 27 in human hepatocellular carcinoma. Life Sci 81:585–591

    Article  PubMed  CAS  Google Scholar 

  12. Fang JY, Richardson BC (2005) The MAPK signalling pathways and colorectal cancer. Lancet Oncol 6:322–327

    Article  PubMed  CAS  Google Scholar 

  13. Zhang X, Liu S, Hu T, Liu S, He Y, Sun S (2009) Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology 50:490–499

    Article  PubMed  CAS  Google Scholar 

  14. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  CAS  Google Scholar 

  15. Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51:2589–2599

    Article  PubMed  CAS  Google Scholar 

  16. Kim TJ (1998) Korean resources plants, 1st edn. Seoul National University Press, South Korea

    Google Scholar 

  17. Yoshikawa K, Hirai H, Tanaka M, Arihara S (2000) Antisweet natural products. XV. Structures of Jegosaponins A-D from Styrax japonica Sieb. et Zucc. Chem Pharm Bull 48:1093–1096

    Article  PubMed  CAS  Google Scholar 

  18. Lee J, Lim KT (2011) Inhibitory effect of phytoglycoprotein (38 kDa) on expression of matrix metalloproteinase-9 in 12-O-tetradecanoylphorbol-13-acetate-treated HepG2cells. Naunyn Schmiedebergs Arch Pharmacol 384:185–196

    Article  PubMed  CAS  Google Scholar 

  19. Neville DM Jr, Glossmann H (1974) Molecular weight determination of membrane protein and glycoprotein subunits by discontinuous gel electrophoresis in dodecyl sulfate. Methods Enzymol 32:92–102

    Article  PubMed  CAS  Google Scholar 

  20. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC (2005) Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 339:69–72

    Article  PubMed  CAS  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  22. Bergmeyer HU, Bernt E (1974) UV-assay with pyruvate and NADH. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol. 2. Academic Press, New York, pp 574–578

    Google Scholar 

  23. Bergmeyer HU, Bernt E (1974) Glutamate-pyruvate transaminase: UV assay, manual method. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol. 2. Academic Press, New York, pp 752–758

    Google Scholar 

  24. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  25. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    PubMed  CAS  Google Scholar 

  26. Thomson JF, Nance SL, Tollaksen SL (1978) Spectrophotometric assay of catalase with perborate as substrate. Proc Soc Exp Biol Med 157:33–35

    PubMed  CAS  Google Scholar 

  27. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  28. Hong WK, Sporn MB (1997) Recent advances in chemoprevention of cancer. Science 278:1073–1077

    Article  PubMed  CAS  Google Scholar 

  29. Rohr-Udilova NV, Stolze K, Sagmeister S, Nohl H, Schulte-Hermann R, Grasl-Kraupp B (2008) Lipid hydroperoxides from processed dietary oils enhance growth of hepatocarcinoma cells. Mol Nutr Food Res 52:352–359

    Article  PubMed  CAS  Google Scholar 

  30. Tarao K, Rino Y, Ohkawa S, Shimizu A, Tamai S, Miyakawa K, Aoki H, Imada T, Shindo K, Okamoto N, Totsuka S (1999) Association between high serum alanine aminotransferase levels and more rapid development and higher rate of incidence of hepatocellular carcinoma in patients with hepatitis C virus-associated cirrhosis. Cancer 86:589–595

    Article  PubMed  CAS  Google Scholar 

  31. Vásquez-Garzón VR, Arellanes-Robledo J, García-Román R, Aparicio-Rautista DI, Villa-Treviño S (2009) Inhibition of reactive oxygen species and pre-neoplastic lesions by quercetin through an antioxidant defense mechanism. Free Radic Res 43:128–137

    Article  PubMed  Google Scholar 

  32. Rao GM, Rao CV, Pushpangadan P, Shirwaikar A (2006) Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn. J Ethnopharmacol 103:484–490

    Article  PubMed  CAS  Google Scholar 

  33. Margaill I, Plotkine M, Lerouet D (2005) Antioxidant strategies in the treatment of stroke. Free Radic Biol Med 39:429–443

    Article  PubMed  CAS  Google Scholar 

  34. Sakamoto M (2009) Early HCC: diagnosis and molecular markers. J Gastroenterol 44:108–111

    Article  PubMed  CAS  Google Scholar 

  35. Bishayee A, Waghray A, Barnes KF, Mbimba T, Bhatia D, Chatterjee M, Darvesh AS (2010) Suppression of the inflammatory cascade is implicated in resveratrol chemoprevention of experimental hepatocarcinogenesis. Pharm Res 27:1080–1091

    Article  PubMed  CAS  Google Scholar 

  36. Guo K, Liu Y, Zhou H, Dai Z, Zhang J, Sun R, Chen J, Sun Q, Lu W, Kang X, Chen P (2008) Involvement of protein kinase C beta-extracellular signal-regulating kinase 1/2/p38 mitogen-activated protein kinase-heat shock protein 27 activation in hepatocellular carcinoma cell motility and invasion. Cancer Sci 99:486–496

    Article  PubMed  CAS  Google Scholar 

  37. Gollob JA, Wilhelm S, Carter C, Kelley SL (2006) Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol 33:392–406

    Article  PubMed  CAS  Google Scholar 

  38. Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G (2007) Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta 1773:1196–1212

    Article  PubMed  CAS  Google Scholar 

  39. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26

    Article  PubMed  CAS  Google Scholar 

  40. Aggarwal BB, Vijayalekshmi RV, Sung B (2009) Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15:425–430

    Article  PubMed  CAS  Google Scholar 

  41. Bosch FX, Ribes J, Díaz M, Cléries R (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology 127:S5–S16

    Article  PubMed  Google Scholar 

  42. Wu Y, Zhou BP (2010) TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer 102:639–644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by Chonnam National University, 2011

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kye-Taek Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Lim, KT. Activity of tumor necrosis factor-α blocked by phytoglycoprotein (38 kDa) at initiation stage in N-nitrosodiethylamine-induced ICR mice. Mol Cell Biochem 362, 177–186 (2012). https://doi.org/10.1007/s11010-011-1140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1140-7

Keywords

Navigation