Skip to main content
Log in

Inhibition of ROS-activated ERK1/2 pathway contributes to the protection of H2S against chemical hypoxia-induced injury in H9c2 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) has been shown to exert cardioprotective effects. However, the roles of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in H2S-induced cardioprotection have not been completely elucidated. In this study, cobalt chloride (CoCl2), a chemical hypoxia mimetic agent, was applied to treat H9c2 cells to establish a chemical hypoxia-induced cardiomyocyte injury model. The results showed that pretreatment with NaHS (a donor of H2S) before exposure to CoCl2 attenuated the decreased cell viability, the increased apoptosis rate, the loss of mitochondrial membrane potential (ΔΨm), and the intracellular accumulation of reactive oxygen species (ROS) in H9c2 cells. Exposure of H9c2 cells to CoCl2 or hydrogen peroxide (H2O2) upregulated expression of phosphorylated (p) ERK1/2, which was reduced by pretreatment with NaHS or N-acetyl-l-cysteine, a ROS scavenger. More importantly, U0126, a selective inhibitor of ERK1/2, mimicked the above cytoprotection of H2S against CoCl2-induced injury in H9c2 cells. In conclusion, these results indicate that H2S protects H9c2 cells against chemical hypoxia-induced injury partially by inhibiting ROS-mediated activation of ERK1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beauchamp RO Jr, Bus JS, Popp JA et al (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97

    Article  PubMed  CAS  Google Scholar 

  2. Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S)-the third gas of interest for pharmacologists. Pharmacol Rep 59:4–24

    PubMed  CAS  Google Scholar 

  3. Szabó C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935

    Article  PubMed  Google Scholar 

  4. Wang R (2002) Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  PubMed  CAS  Google Scholar 

  5. Cheng Y, Ndisang JF, Tang G et al (2004) Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287:H2316–H2323

    Article  PubMed  CAS  Google Scholar 

  6. Leffler CW, Parfenova H, Jaggar JH, Wang R (2006) Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol 100:1065–1076

    Article  PubMed  CAS  Google Scholar 

  7. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    Article  PubMed  CAS  Google Scholar 

  8. Geng B, Yang J, Qi Y et al (2004) H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313:362–368

    Article  PubMed  CAS  Google Scholar 

  9. Sivarajah A, McDonald MC, Thiemermann C (2006) The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock 26:154–161

    Article  PubMed  CAS  Google Scholar 

  10. Chen CQ, Xin H, Zhu YZ (2007) Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol Sin 28:1709–1716

    Article  PubMed  CAS  Google Scholar 

  11. Ji Y, Pang QF, Xu G et al (2008) Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Eur J Pharmacol 587:1–7

    Article  PubMed  CAS  Google Scholar 

  12. Osipov RM, Robich MP, Feng J et al (2009) Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J Cardiovasc Pharmacol 54:287–297

    Article  PubMed  CAS  Google Scholar 

  13. Sodha NR, Clements RT, Feng J et al (2008) The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia-reperfusion injury. Eur J Cardiothorac Surg 33:906–913

    Article  PubMed  Google Scholar 

  14. Pan TT, Feng ZN, Lee SW et al (2006) Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol 40:119–130

    Article  PubMed  CAS  Google Scholar 

  15. Bian JS, Yong QC, Pan TT et al (2006) Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 316:670–678

    Article  PubMed  CAS  Google Scholar 

  16. Chen SL, Yang CT, Yang ZL et al (2010) Hydrogen sulphide protects H9c2 cells against chemical hypoxia-induced injury. Clin Exp Pharmacol Physiol 37:316–321

    Article  PubMed  CAS  Google Scholar 

  17. Yang Z, Yang C, Xiao L et al (2011) Novel insights into the role of HSP90 in cytoprotection of H2S against chemical hypoxia-induced injury in H9c2 cardiac myocytes. Int J Mol Med 23:397–403

    Google Scholar 

  18. Yang SJ, Pyen J, Lee I et al (2004) Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase 1/2 activation in rat C6 glioma cells. J Biochem Mol Biol 37:480–486

    Article  PubMed  CAS  Google Scholar 

  19. Myhre O, Sterri SH, Bogen IL, Fonnum F (2004) ERK1/2 phosphorylation and reactive oxygen species formation via nitric oxide and Akt-1/Raf-1 crosstalk in cultured rat cerebellar granule cells exposed to the organic solvent 1,2,4-trimethylcyclohexane. Toxicol Sci 80:296–303

    Article  PubMed  CAS  Google Scholar 

  20. Gong KZ, Zhang ZG, Li AH et al (2004) ROS-mediated ERK activation in delayed protection from anoxic preconditioning in neonatal rat cardiomyocytes. Chin Med J (Engl) 117:395–400

    Google Scholar 

  21. Du J, Hui Y, Cheung Y et al (2004) The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells. Heart Vessel 19:75–80

    Article  Google Scholar 

  22. Oh GS, Pae HO, Lee BS et al (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41:106–119

    Article  PubMed  CAS  Google Scholar 

  23. Adhikari S, Bhatia M (2008) H2S-induced pancreatic acinar cell apoptosis is mediated via JNK and p38 MAP kinase. J Cell Mol Med 12:1374–1383

    Article  PubMed  CAS  Google Scholar 

  24. Yang G, Yang W, Wu L, Wang R (2007) H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells. J Biol Chem 282:16567–16576

    Article  PubMed  CAS  Google Scholar 

  25. Dong X, Li Z, Wang W et al (2011) Protective effect of canolol from oxidative stress-induced cell damage in ARPE-19 cells via an ERK mediated antioxidative pathway. Mol Vis 17:2040–2048

    PubMed  CAS  Google Scholar 

  26. Kang PM, Haunstetter A, Aoki H et al (2000) Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87:118–125

    PubMed  CAS  Google Scholar 

  27. Mehrhof FB, Muller FU, Bergmann MW et al (2001) In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation 104:2088–2094

    Article  PubMed  CAS  Google Scholar 

  28. Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    Article  PubMed  CAS  Google Scholar 

  29. Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444

    PubMed  CAS  Google Scholar 

  30. Lips DJ, Bueno OF, Wilkins BJ et al (2004) MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109:1938–1941

    Article  PubMed  CAS  Google Scholar 

  31. Strohm C, Barancik T, Bruhl ML et al (2000) Inhibition of the ER-kinase cascade by PD98059 and UO126 counteracts ischemic preconditioning in pig myocardium. J Cardiovasc Pharmacol 36:218–229

    Article  PubMed  CAS  Google Scholar 

  32. Buehler A, Martire A, Strohm C et al (2002) Angiogenesis-independent cardioprotection in FGF-1 transgenic mice. Cardiovasc Res 55:768–777

    Article  PubMed  CAS  Google Scholar 

  33. Milano G, von Segesser LK, Morel S et al (2010) Phosphorylation of phosphatidylinositol-3-kinase-protein kinase B and extracellular signal-regulated kinases 1/2 mediate reoxygenation-induced cardioprotection during hypoxia. Exp Biol Med (Maywood) 235:401–410

    Article  CAS  Google Scholar 

  34. Yue TL, Wang C, Gu JL et al (2000) Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699

    PubMed  CAS  Google Scholar 

  35. Alessandrini A, Namura S, Moskowitz MA, Bonventre JV (1999) MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci USA 96:12866–12869

    Article  PubMed  CAS  Google Scholar 

  36. Lee YJ, Cho HN, Soh JW et al (2003) Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation. Exp Cell Res 291:251–266

    Article  PubMed  CAS  Google Scholar 

  37. Chen L, Liu L, Yin J et al (2009) Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol 41:1284–1295

    Article  PubMed  CAS  Google Scholar 

  38. Chen L, Liu L, Huang S (2008) Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med 45:1035–1044

    Article  PubMed  CAS  Google Scholar 

  39. Ballif BA, Blenis J (2001) Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 12:397–408

    PubMed  CAS  Google Scholar 

  40. Shao Z, Bhattacharya K, Hsich E et al (2006) c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo. Circ Res 98:111–118

    Article  PubMed  CAS  Google Scholar 

  41. El Jamali A, Freund C, Rechner C et al (2004) Reoxygenation after severe hypoxia induces cardiomyocyte hypertrophy in vitro: activation of CREB downstream of GSK3beta. FASEB J 18:1096–1098

    PubMed  CAS  Google Scholar 

  42. Zhi L, Ang AD, Zhang H et al (2007) Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-kappaB pathway. J Leukoc Biol 81:1322–1332

    Article  PubMed  CAS  Google Scholar 

  43. Mukherjee S, Lekli I, Goswami S, Das DK (2009) Freshly crushed garlic is a superior cardioprotective agent than processed garlic. J Agric Food Chem 57:7137–7144

    Article  PubMed  CAS  Google Scholar 

  44. Yang G, Cao K, Wu L, Wang R (2004) Cystathionine gamma-lyase overexpression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21Cip/WAK-1. J Biol Chem 279:49199–49205

    Article  PubMed  CAS  Google Scholar 

  45. Yang G, Wu L, Bryan S et al (2010) Cystathionine gamma-lyase deficiency and overproliferation of smooth muscle cells. Cardiovasc Res 86:487–495

    Article  PubMed  CAS  Google Scholar 

  46. Imai T, Ii H, Yaegaki K et al (2009) Oral malodorous compound inhibits osteoblast proliferation. J Periodontol 80:2028–2034

    Article  PubMed  CAS  Google Scholar 

  47. Hu Y, Chen X, Pan TT et al (2008) Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Arch 455:607–616

    Article  PubMed  CAS  Google Scholar 

  48. Lu M, Hu LF, Hu G, Bian JS (2008) Hydrogen sulfide protects astrocytes against H(2)O(2)-induced neural injury via enhancing glutamate uptake. Free Radic Biol Med 45:1705–1713

    Article  PubMed  CAS  Google Scholar 

  49. Kloesch B, Liszt M, Broell J (2010) H2S transiently blocks IL-6 expression in rheumatoid arthritic fibroblast-like synoviocytes and deactivates p44/42 mitogen-activated protein kinase. Cell Biol Int 34:477–484

    Article  PubMed  CAS  Google Scholar 

  50. Cai WJ, Wang MJ, Moore PK et al (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76:29–40

    Article  PubMed  CAS  Google Scholar 

  51. Bliksoen M, Kaljusto ML, Vaage J, Stenslokken KO (2008) Effects of hydrogen sulphide on ischaemia-reperfusion injury and ischaemic preconditioning in the isolated, perfused rat heart. Eur J Cardiothorac Surg 34:344–349

    Article  PubMed  Google Scholar 

  52. Zhang X, Shan P, Sasidhar M et al (2003) Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium. Am J Respir Cell Mol Biol 28:305–315

    Article  PubMed  CAS  Google Scholar 

  53. Seo SR, Chong SA, Lee SI et al (2001) Zn2+-induced ERK activation mediated by reactive oxygen species causes cell death in differentiated PC12 cells. J Neurochem 78:600–610

    Article  PubMed  CAS  Google Scholar 

  54. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Guangdong Science & Technology Planning Project (Nos. 2010B080701105, 2009B080701014, and 2007B080701030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Qiang Feng, Mei-Fen Zhang or Xin-Xue Liao.

Additional information

Xiao-Bian Dong and Chun-Tao Yang have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, XB., Yang, CT., Zheng, DD. et al. Inhibition of ROS-activated ERK1/2 pathway contributes to the protection of H2S against chemical hypoxia-induced injury in H9c2 cells. Mol Cell Biochem 362, 149–157 (2012). https://doi.org/10.1007/s11010-011-1137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1137-2

Keywords

Navigation