Skip to main content

Advertisement

Log in

Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Deficiency of zinc plays an important role in the pathogenesis of osteoporosis; however, the underlying mechanism is not well understood. Apoptosis of osteoblast causing the loss of bone mass is an important event in the osteoporosis. In this article, we investigated whether zinc deficiency would induce cell apoptosis in MC3T3-E1 cells and ask if it is involved in mitochondrial-mediated pathway. Significant increased apoptosis were observed in zinc deficiency group (ZnD: 5 μM TPEN and 1 μM zinc) compared with untreated control or zinc adequacy group (ZnA: 5 μM TPEN and 15 μM zinc). The mitochondrial membrane potential was strikingly reduced in ZnD group. Furthermore, we observed that the levels of Bax in mitochondria fraction and cyto c, AIF, and cleaved caspase-3/-9 in cytosol fraction were increased in ZnD group. We proposed that zinc deficiency would induce the translocation of Bax into mitochondria, which could lead to the reduction in mitochondrial membrane potential as well as the increase in mitochondrial membrane permeability. In addition, cyto c and AIF were released from mitochondria into the cytosol, which finally activated caspase-dependent and caspase-independent apoptosis processes in MC3T3-E1 cells. Our findings suggested that zinc deficiency is capable of inducing apoptosis through a mitochondria-mediated pathway in osteoblastic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yamaguchi M (2010) Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 338:241–254

    Article  PubMed  CAS  Google Scholar 

  2. Ryz NR, Weiler HA, Taylor CG (2009) Zinc deficiency reduces bone mineral density in the spine of young adult rats: a pilot study. Ann Nutr Metab 54:218–226

    Article  PubMed  CAS  Google Scholar 

  3. da Cunha Ferreira RM, Marquiegui IM et al (1989) Teratogenicity of zinc deficiency in the rat: study of the fetal skeleton. Teratology 39:181–194

    Article  PubMed  Google Scholar 

  4. Kwun IS, Cho YE, Lomeda RA et al (2010) Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 46:732–741

    Article  PubMed  CAS  Google Scholar 

  5. Otsuka M, Oshinbe A, Legeros RZ et al (2008) Efficacy of the injectable calcium phosphate ceramics suspensions containing magnesium, zinc and fluoride on the bone mineral deficiency in ovariectomized rats. J Pharm Sci 97:421–432

    Article  PubMed  CAS  Google Scholar 

  6. Lytras A, Tolis G (2007) Assessment of endocrine and nutritional status in age-related catabolic states of muscle and bone. Curr Opin Clin Nutr Metab Care 10:604–610

    Article  PubMed  CAS  Google Scholar 

  7. Gur A, Colpan L, Cevik R et al (2005) Comparison of zinc excretion and biochemical markers of bone remodelling in the assessment of the effects of alendronate and calcitonin on bone in postmenopausal osteoporosis. Clin Biochem 38:66–72

    Article  PubMed  CAS  Google Scholar 

  8. Armour KJ, Armour KE, van’t Hof RJ et al (2001) Activation of the inducible nitric oxide synthase pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis. Arthritis Rheum 44:2790–2796

    Article  PubMed  CAS  Google Scholar 

  9. Kim SH, Yoo CI, Kim HT et al (2006) Activation of peroxisome proliferator-activated receptor-gamma (PPARgamma) induces cell death through MAPK-dependent mechanism in osteoblastic cells. Toxicol Appl Pharmacol 215:198–207

    Article  PubMed  CAS  Google Scholar 

  10. Sorice M, Circella A, Cristea IM et al (2004) Cardiolipin, its metabolites move from mitochondria to other cellular membranes during death receptor-mediated apoptosis. Cell Death Differ 11:1133–1145

    Article  PubMed  CAS  Google Scholar 

  11. Dewson G, Kluck RM (2009) Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J Cell Sci 122:2801–2808

    Article  PubMed  CAS  Google Scholar 

  12. Sheridan C, Delivani P, Cullen SP et al (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol Cell 31:570–585

    Article  PubMed  CAS  Google Scholar 

  13. Slee EA, Harte MT, Kluck RM et al (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144:281–292

    Article  PubMed  CAS  Google Scholar 

  14. Twiddy D, Brown DG, Adrain C et al (2004) Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/caspase-9 apoptosome complex. J Biol Chem 279:19665–19682

    Article  PubMed  CAS  Google Scholar 

  15. Norberg E, Orrenius S, Zhivotovsky B (2010) Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochem Biophys Res Commun 396:95–100

    Article  PubMed  CAS  Google Scholar 

  16. Fehlberg S, Gregel CM, Göke A et al (2003) Bisphenol A diglycidyl ether-induced apoptosis involves Bax/Bid-dependent mitochondrial release of apoptosis-inducing factor (AIF), cytochrome c and Smac/DIABLO. Br J Pharmacol 139:495–500

    Article  PubMed  CAS  Google Scholar 

  17. Adamo AM, Zago MP, Mackenzie GG et al (2010) The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox Res 17:1–14

    Article  PubMed  CAS  Google Scholar 

  18. Steiger-Barraissoul S, Rami A (2009) Serum deprivation induced autophagy and predominantly an AIF-dependent apoptosis in hippocampal HT22 neurons. Apoptosis 14:1274–1288

    Article  PubMed  CAS  Google Scholar 

  19. Zhao Y, Tan Y, Dai J et al (2011) Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicol Lett 200:100–106

    Article  PubMed  CAS  Google Scholar 

  20. Chou SS, Clegg MS, Momma TY et al (2004) Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death. Biochem J 383:63–71

    Article  PubMed  CAS  Google Scholar 

  21. Jung JI, Lim SS, Choi HJ et al (2006) Isoliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells. J Nutr Biochem 17:689–696

    Article  PubMed  CAS  Google Scholar 

  22. Norberg E, Gogvadze V, Ott M et al (2008) An increase in intracellular Ca2+ is required for the activation of mitochondrial calpain to release AIF during cell death. Cell Death Differ 15:1857–1864

    Article  PubMed  CAS  Google Scholar 

  23. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  CAS  Google Scholar 

  24. Cho YE, Lomeda RA, Ryu SH et al (2007) Cellular Zn depletion by metal ion chelators (TPEN, DTPA and chelex resin) and its application to osteoblastic MC3T3–E1 cells. Nutr Res Pract 1:29–35

    Article  PubMed  CAS  Google Scholar 

  25. Tomasello F, Messina A, Lartigue L et al (2009) Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis. Cell Res 19:1363–1376

    Article  PubMed  CAS  Google Scholar 

  26. Baek D, Nam J, Koo YD et al (2004) Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and -independent processes. Plant Mol Biol 56:15–27

    Article  PubMed  CAS  Google Scholar 

  27. Kondo K, Obitsu S, Ohta S et al (2010) ly(ADP-ribose) polymerase (PARP)-1-independent apoptosis-inducing factor (AIF) release and cell death are induced by eleostearic acid and blocked by alpha-tocopherol and MEK inhibition. J Biol Chem 285:13079–13091

    Article  PubMed  CAS  Google Scholar 

  28. Gogvadze V, Norberg E, Orrenius S et al (2010) Involvement of Ca2+ and ROS in alpha-tocopheryl succinate-induced mitochondrial permeabilization. Int J Cancer 127:1823–1832

    Article  PubMed  CAS  Google Scholar 

  29. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    Article  PubMed  CAS  Google Scholar 

  30. Lauber K, Appel HA, Schlosser SF et al (2001) The adapter protein apoptotic protease-activating factor-1 (Apaf-1) is proteolytically processed during apoptosis. J Biol Chem 276:29772–29781

    Article  PubMed  CAS  Google Scholar 

  31. Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23:2785–2796

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30771813) and the Natural Science Foundation of Liaoning Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maowei Yang.

Additional information

Baolei Guo and Maowei Yang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, B., Yang, M., Liang, D. et al. Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway. Mol Cell Biochem 361, 209–216 (2012). https://doi.org/10.1007/s11010-011-1105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1105-x

Keywords

Navigation