Skip to main content
Log in

Insulin-like growth factor binding protein-6 interacts with the thyroid hormone receptor α1 and modulates the thyroid hormone-response in osteoblastic differentiation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Insulin-like growth factor binding protein-6 (IGFBP-6) is a member of the insulin-like growth factor binding protein family, which has both Insulin-like growth factor-dependent and independent effects on cell growth. In previous studies, we have shown that recombinant IGFBP-6 could be translocated into the cell nucleus. But the effect in the nucleus of IGFBP-6 is not clear. In the present study, we use multiple methodologies including Glutathione S-transferase pull-down assay, co-immunoprecipitation, fluorescence resonance energy transfer to demonstrate that IGFBP-6 can directly interact with thyroid hormone receptor alpha 1 (TRα1) in vitro and in vivo. We also demonstrate that the DNA-binding domains and Ligand-binding domains of TRα1 and N-terminal domains and C-terminal domains of IGFBP-6 are involved in the interaction. This interaction also can block the formation of TR: retinoid X receptor heterodimers. Furthermore, immunofluorescence co-localization studies show IGFBP-6 and TRα1 could co-localize in the nucleus of the cells. Reporter gene experiment shows that IGFBP-6 negatively regulates the growth hormone promoter activity induced by ligand activated TRα1. Moreover, real-time RT-PCR demonstrates that IGFBP-6 could inhibit the osteocalcin mRNA transcription induced by Triiodothyronine (3,3′,5-Triiodo-L-thyronine, T3) in osteoblastic cells. Finally, alkaline phosphatase activity was significantly decreased in osteoblastic cells when the cells were transfected with IGFBP-6 in the presence of T3. In conclusion, these studies provide evidence that overexpression of IGFBP-6 suppresses osteoblastic differentiation regulated by TR in the present of T3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bassett JH, Williams GR (2003) The molecular actions of thyroid hormone in bone. Trends Endocrinol Metab 14:356–364

    Article  PubMed  CAS  Google Scholar 

  2. Harvey CB, O’Shea PJ, Scott AJ, Robson H, Siebler T, Shalet SM, Samarut J, Chassande O, Williams GR (2002) Molecular mechanisms of thyroid hormone effects on bone growth and function. Mol Genet Metab 75:17–30

    Article  PubMed  CAS  Google Scholar 

  3. Bassett JH, Williams AJ, Murphy E, Boyde A, Howell PG, Swinhoe R, Archanco M, Flamant F, Samarut J, Costagliola S, Vassart G, Weiss RE, Refetoff S, Williams GR (2008) A lack of thyroid hormones rather than excess thyrotropin causes abnormal skeletal development in hypothyroidism. Mol Endocrinol 22:501–512

    Article  PubMed  CAS  Google Scholar 

  4. Shao YY, Wang L, Ballock RT (2006) Thyroid hormone and the growth plate. Rev Endocr Metab Disord 7:265–271

    Article  PubMed  CAS  Google Scholar 

  5. Klaushofer K, Varga F, Glantschnig H, Fratzl-Zelman N, Czerwenka E, Leis HJ, Koller K, Peterlik M (1995) The regulatory role of thyroid hormones in bone cell growth and differentiation. J Nutr 125(Supplement 7):1996S–2003S

    PubMed  CAS  Google Scholar 

  6. Murphy E, Williams GR (2004) The thyroid and the skeleton. Clin Endocrinol 61:285–298

    Article  CAS  Google Scholar 

  7. Gogakos AI, Duncan Bassett JH, Williams GR (2010) Thyroid and bone. Arch Biochem Biophys 503:129–136

    Article  PubMed  CAS  Google Scholar 

  8. Bassett J, Williams G (2008) Critical role of the hypothalamic-pituitary-thyroid axis in bone. Bone 43:418–426

    Article  PubMed  CAS  Google Scholar 

  9. Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142

    PubMed  CAS  Google Scholar 

  10. Shi YB (2009) Dual functions of thyroid hormone receptors in vertebrate development: the roles of histone-modifying cofactor complexes. Thyroid 19:987–999

    Article  PubMed  CAS  Google Scholar 

  11. Oetting A, Yen PM (2007) New insights into thyroid hormone action. Best Pract Res Clin Endocrinol Metab 21:193–208

    Article  PubMed  CAS  Google Scholar 

  12. Cheng SY (2000) Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 1:9–18

    Article  PubMed  CAS  Google Scholar 

  13. Capelo LP, Beber EH, Fonseca TL, Gouveia CH (2009) The monocarboxylate transporter 8 and L-type amino acid transporters 1 and 2 are expressed in mouse skeletons and in osteoblastic MC3T3–E1 cells. Thyroid 19:171–180

    Article  PubMed  CAS  Google Scholar 

  14. Perks CM, McCaig C, Holly JM (2000) Differential insulin-like growth factor (IGF)-independent interactions of IGF binding protein-3 and IGF binding protein-5 on apoptosis in human breast cancer cells involvement of the mitochondria. J Cell Biochem 80:248–258

    Article  PubMed  CAS  Google Scholar 

  15. Kamanga-Sollo E, Pampusch MS, White ME, Hathaway MR, Dayton WR (2005) Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-beta- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures. Exp Cell Res 311:167–176

    Article  PubMed  CAS  Google Scholar 

  16. Bach LA (2005) IGFBP-6 five years on; not so ‘forgotten’? Growth Horm IGF Res 15:185–192

    Article  PubMed  CAS  Google Scholar 

  17. Iosef C, Gkourasas T, Jia CY, Li SS, Han VK (2008) A functional nuclear localization signal in insulin-like growth factor binding protein-6 mediates its nuclear import. Endocrinology 149:1214–1226

    Article  PubMed  CAS  Google Scholar 

  18. Strohbach C, Kleinman S, Linkhart T, Amaar Y, Chen ST, Mohan S, Strong D (2008) Potential involvement of the interaction between insulin-like growth factor binding protein (IGFBP)-6 and LIM mineralization protein (LMP)-1 in regulating osteoblast differentiation. J Cell Biochem 104:1890–1905

    Article  PubMed  CAS  Google Scholar 

  19. Efendiev R, Cinelli AR, Leibiger IB, Bertorello AM, Pedemonte CH (2006) FRET analysis reveals a critical conformational change within the Na, K-ATPase α1 subunit N-terminus during GPCR-dependent endocytosis. FEBS Lett 580:5067–5070

    Article  PubMed  CAS  Google Scholar 

  20. Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713

    Article  PubMed  CAS  Google Scholar 

  21. Schedlich LJ, Muthukaruppan A, O’Han MK, Baxter RC (2007) Insulin-like growth factor binding protein-5 interacts with the vitamin D receptor and modulates the vitamin D response in osteoblasts. Mol Endocrinol 21:2378–2390

    Article  PubMed  CAS  Google Scholar 

  22. Schedlich LJ, O’Han MK, Leong GM, Baxter RC (2004) Insulin-like growth factor binding protein-3 prevents retinoid receptor heterodimerization: implications for retinoic acid-sensitivity in human breast cancer cells. Biochem Biophys Res Common 314:83–88

    Article  CAS  Google Scholar 

  23. Kumar R, Thompson EB (1999) The structure of the nuclear hormone receptors. Steroids 64:310–319

    Article  PubMed  CAS  Google Scholar 

  24. Schedlich LJ, Graham LD, O’Han MK, Muthukaruppan A, Yan X, Firth SM, Baxter RC (2007) Molecular basis of the interaction between IGFBP-3 and retinoid X receptor: role in modulation of RAR-signaling. Arch Biochem Biophys 465:359–369

    Article  PubMed  CAS  Google Scholar 

  25. Dye BT (2005) Flow cytometric analysis of CFP–YFP FRET as a marker for in vivo protein–protein interaction. Clin Appl Immu Rev 5:307–324

    Article  CAS  Google Scholar 

  26. Bassett J, Williams G (2008) Critical role of the hypothalamic-pituitary-thyroid axis in bone. Bone 43:418–426

    Article  PubMed  CAS  Google Scholar 

  27. Huang W, Carlsen B, Rudkin GH, Shah N, Chung C, Ishida K, Yamaguchi DT, Miller TA (2001) Effect of serial passage on gene expression in MC3T3–E1 preosteoblastic cells: a microarray study. Biochem Biophys Res Commun 281:1120–1126

    Article  PubMed  CAS  Google Scholar 

  28. Govoni KE, Amaar YG, Kramer A, Winter E, Baylink DJ, Mohan S (2006) Regulation of insulin-like growth factor binding protein-5, four and a half lim-2, and a disintegrin and metalloprotease-9 expression in osteoblasts. Growth Horm IGF Res 16:49–56

    Article  PubMed  CAS  Google Scholar 

  29. Mukherjee A, Rotwein P (2007) Insulin-like growth factor binding protein-5 in osteogenesis: facilitator or inhibitor? Growth Horm IGF Res 17:179–185

    Article  PubMed  CAS  Google Scholar 

  30. Chihara K, Sugimoto T (1997) The action of GH/IGF-I/IGFBP in osteoblasts and osteoclasts. Horm Res 48(Suppl 5):45–49

    Article  PubMed  CAS  Google Scholar 

  31. Mukherjee A, Rotwein P (2008) Insulin-like growth factor-binding protein-5 inhibits osteoblast differentiation and skeletal growth by blocking insulin-like growth factor actions. Mol Endocrinol 22:1238–1250

    Article  PubMed  CAS  Google Scholar 

  32. Durant D, Pereira RM, Canalis E (2004) Overexpression of insulin-like growth factor binding protein-5 decreases osteoblastic function in vitro. Bone 35:1256–1262

    Article  PubMed  CAS  Google Scholar 

  33. Asai S, Cao X, Yamauchi M, Funahashi K, Ishiguro N, Kambe F (2009) Thyroid hormone non-genomically suppresses Src thereby stimulating osteocalcin expression in primary mouse calvarial osteoblasts. Biochem Biophys Res Commun 387:92–96

    Article  PubMed  CAS  Google Scholar 

  34. Kasono K, Sato K, Han D, Fujii Y, Tsushima T, Shizume K (1988) Stimulation of alkaline phosphatase activity by thyroid hormone in mouse osteoblast-like cells (MC3T3–E1): a possible mechanism of hyperalkaline phosphatasia in hyperthyroidism. Bone Miner 4:355–363

    PubMed  CAS  Google Scholar 

  35. Varga F, Rumpler M, Luegmayr E, Fratzl-Zelman N, Glantschnig H, Klaushofer K (1997) Triiodothyronine, a regulator of osteoblastic differentiation: depression of histone H4, attenuation of c-fos/c-jun, and induction of osteocalcin expression. Calcif Tissue Int 61:404–411

    Article  PubMed  CAS  Google Scholar 

  36. Chambery D, De Galle B, Ehrenborg E, Babajko S (2000) Multi-hormonal regulation of IGFBP-6 expression in human neuroblastoma cell. Growth Horm IGF Res 10:349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. David J. Mangelsdorf (Howard Hughes Medical Institute, UT Southwestern Medical Center, Department of Pharmacology) for giving us pGEX-2T-hRXRa. The authors also thank Prof. Norman Eberhardt (Mayo Clinic, Department of Medicine/Division of Endocrinology) and Dr. Peter A. Cattini (Department of Physiology, University of Manitoba) for giving them pGL3-GH promoter plasmid and other GH relative luciferase reporter plasmids.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Chen or Bing-Ren Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J., Ma, XL., Wang, X. et al. Insulin-like growth factor binding protein-6 interacts with the thyroid hormone receptor α1 and modulates the thyroid hormone-response in osteoblastic differentiation. Mol Cell Biochem 361, 197–208 (2012). https://doi.org/10.1007/s11010-011-1104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1104-y

Keywords

Navigation