Skip to main content

Advertisement

Log in

Cardiac dysfunction subsequent to chronic ozone exposure in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A number of advancements have been made toward identifying the risk factors associated with cardiovascular disease (CVD) and have resulted in a decline in mortality. However, many patients with cardiac disease show no established previous risk. Thus, it appears that other unknown factors contribute to the pathophysiology of CVD. Out of 350,000 sudden cardiac deaths each year in the United States, 60,000 deaths have been linked to air pollution, suggesting a detrimental role of environmental pollutants in the development of CVD. This study tested the hypothesis that chronic ozone (O3) exposure diminishes myocardial function in healthy population. Male Sprague–Dawley rats were exposed 8 h/day for 28 and 56 days to filtered air or 0.8 ppm O3. In vivo cardiac function was assessed by measuring LVDP, +dP/dt, −dP/dt, and LVEDP 24 h after termination of the O3 exposure. Compared to rats exposed to filtered air, LVDP, +dP/dt, and −dP/dt were significantly decreased, and LVEDP was significantly increased in O3 exposed animals. This attenuation of cardiac function was associated with increased myocardial TNF-alpha levels and lipid peroxidation as well as decreased myocardial activities of superoxidase dismutase and interleukin-10 levels. These novel findings suggest myocardial dysfunction subsequent to chronic O3 exposure in normal adult rats may be associated with a decrease in antioxidant reserve and with an increased production of inflammatory mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Levy D, Wilson P (1998) Atherosclerotic cardiovascular disease: an epidemiological perspective. In: Topol E (ed) Comprehensive cardiovascular medicine. Lippincott-Raven, Philadelphia, PA, pp 27–43

    Google Scholar 

  2. Hennekens CH (1998) Increasing burden of cardiovascular disease: current knowledge and future directions for research on risk factors. Circulation 97(11):1095–1102

    PubMed  CAS  Google Scholar 

  3. Ruidavets J-B, Cournot M, Cassadou S, Giroux M, Meybeck M, Ferrieres J (2005) Ozone air pollution is associated with acute myocardial infarction. Circulation 111(5):563–569. doi:10.1161/01.cir.0000154546.32135.6e

    Article  PubMed  CAS  Google Scholar 

  4. Gold DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B, Allen G, Verrier M, Cherry R, Verrier R (2000) Ambient pollution and heart rate variability. Circulation 101(11):1267–1273

    PubMed  CAS  Google Scholar 

  5. Chuang K-J, Chan C–C, Su T-C, Lee C-T, Tang C-S (2007) The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am J Respir Crit Care Med 176(4):370–376. doi:10.1164/rccm.200611-1627OC

    Article  PubMed  CAS  Google Scholar 

  6. Bocci V (2006) Is it true that ozone is always toxic? The end of a dogma. Toxicol Appl Pharmacol 216(3):493–504. doi:10.1016/j.taap.2006.06.009

    Article  PubMed  CAS  Google Scholar 

  7. Brook RD (2008) Cardiovascular effects of air pollution. Clin Sci 115(6):175–187. doi:10.1042/cs20070444

    Article  PubMed  CAS  Google Scholar 

  8. Perepu RS, Garcia C, Dostal D, Sethi R (2010) Enhanced death signaling in ozone-exposed ischemic-reperfused hearts. Mol Cell Biochem 336(1–2):55–64. doi:10.1007/s11010-009-0265-4

    Article  PubMed  CAS  Google Scholar 

  9. Di Filippo C, Marfella R, Capodanno P, Ferraraccio F, Coppola L, Luongo M, Mascolo L, Luongo C, Capuano A, Rossi F, D’Amico M (2008) Acute oxygen-ozone administration to rats protects the heart from ischemia reperfusion infarct. Inflamm Res 57(10):445–449. doi:10.1007/s00011-008-7237-0

    Article  PubMed  Google Scholar 

  10. Merin O, Attias E, Elstein D, Schwalb H, Bitran D, Zimran A, Silberman S (2007) Ozone administration reduces reperfusion injury in an isolated rat heart model. J Card Surg 22(4):339–342. doi:10.1111/j.1540-8191.2007.00419.x

    Article  PubMed  Google Scholar 

  11. Sethi R, Saini HK, Guo X, Wang X, Elimban V, Dhalla NS (2007) Dependence of changes in β-adrenoceptor signal transduction on type and stage of cardiac hypertrophy. J Appl Physiol 102(3):978–984. doi:10.1152/japplphysiol.00921.2006

    Article  PubMed  CAS  Google Scholar 

  12. Singla DK, Kaur K, Sharma AK, Dhingra S, Singal PK (2007) Probucol promotes endogenous antioxidant reserve and confers protection against reperfusion injury. Can J Physiol Pharmacol 85(3–4):439–443. doi:10.1139/y06-071

    Article  PubMed  CAS  Google Scholar 

  13. Kaur K, Sharma AK, Dhingra S, Singal PK (2006) Interplay of TNF-alpha and IL-10 in regulating oxidative stress in isolated adult cardiac myocytes. J Mol Cell Cardiol 41(6):1023–1030. doi:10.1016/j.yjmcc.2006.08.005

    Article  PubMed  CAS  Google Scholar 

  14. Fakhrzadeh L, Laskin JD, Gardner CR, Laskin DL (2004) Superoxide dismutase-overexpressing mice are resistant to ozone-induced tissue injury and increases in nitric oxide and tumor necrosis factor-alpha. Am J Respir Cell Mol Biol 30(3):280–287. doi:10.1165/rcmb.2003-0044OC

    Article  PubMed  CAS  Google Scholar 

  15. Jonsson LM, Edlund T, Marklund SL, Sandstrom T (2002) Increased ozone-induced airway neutrophilic inflammation in extracellular-superoxide dismutase null mice. Respir Med 96(4):209–214

    Article  PubMed  CAS  Google Scholar 

  16. Kapadia SR, Oral H, Lee J, Nakano M, Taffet GE, Mann DL (1997) Hemodynamic regulation of tumor necrosis factor-alpha gene and protein expression in adult feline myocardium. Circ Res 81(2):187–195

    PubMed  CAS  Google Scholar 

  17. Bhalla DK, Reinhart PG, Bai C, Gupta SK (2002) Amelioration of ozone-induced lung injury by anti-tumor necrosis factor-alpha. Toxicol Sci 69(2):400–408

    Article  PubMed  CAS  Google Scholar 

  18. Meldrum DR, Cleveland JC Jr, Cain BS, Meng X, Harken AH (1998) Increased myocardial tumor necrosis factor-alpha in a crystalloid-perfused model of cardiac ischemia-reperfusion injury. Ann Thorac Surg 65(2):439–443

    Article  PubMed  CAS  Google Scholar 

  19. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81(4):627–635

    PubMed  CAS  Google Scholar 

  20. Wang M, Markel T, Crisostomo P, Herring C, Meldrum KK, Lillemoe KD, Meldrum DR (2007) Deficiency of TNFR1 protects myocardium through SOCS3 and IL-6 but not p38 MAPK or IL-1beta. Am J Physiol Heart Circ Physiol 292(4):H1694–H1699. doi:10.1152/ajpheart.01063.2006

    Article  PubMed  CAS  Google Scholar 

  21. Wang M, Crisostomo PR, Markel TA, Wang Y, Meldrum DR (2008) Mechanisms of sex differences in TNFR2-mediated cardioprotection. Circulation 118(14 Suppl):S38–S45. doi:10.1161/CIRCULATIONAHA.107.756890

    Article  PubMed  CAS  Google Scholar 

  22. Ozsoy HZ, Sivasubramanian N, Wieder ED, Pedersen S, Mann DL (2008) Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling. J Biol Chem 283(34):23419–23428. doi:10.1074/jbc.M802967200

    Article  PubMed  CAS  Google Scholar 

  23. Dhingra S, Sharma AK, Arora RC, Slezak J, Singal PK (2009) IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. Cardiovasc Res 82(1):59–66. doi:10.1093/cvr/cvp040

    Article  PubMed  CAS  Google Scholar 

  24. Funabashi H, Shima M, Kuwaki T, Hiroshima K, Kuriyama T (2004) Effects of repeated ozone exposure on pulmonary function and bronchial responsiveness in mice sensitized with ovalbumin. Toxicology 204(1):75–83. doi:10.1016/j.tox.2004.06.047

    Article  PubMed  CAS  Google Scholar 

  25. Last JA, Gohil K, Mathrani VC, Kenyon NJ (2005) Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes. Toxicol Appl Pharmacol 208(2):117–126. doi:10.1016/j.taap.2005.02.001

    Article  PubMed  CAS  Google Scholar 

  26. U.S. EPA. Air Quality Criteria for Ozone and Related Photochemical Oxidants (2006). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-05/004aF-cF

Download references

Acknowledgments

Dr. Rama Surya Prakash Perepu was a graduate student with TAMUK. This study was made possible by the United States Environmental Protection Agency Grant (USEPA Grant # IT-83404401-0) and Texas A&M Health Science Research Development Grant (Act# 134403-35402) and funds from TAMHSC Research Startup (Act# 13100-35488). The authors would like to acknowledge Mr. Don Marek from TAMUK—Department of Environmental Engineering; Ms. Maggie Ramirez and Mr. Daniel Diaz from TAMUK—Department of Biology and Health Sciences; Ms. Baimee Nguyen, Ms. Amber Chun, Ms. Roxana Apacible and Mr. Richard Wong from TAMHSC—Rangel College of Pharmacy; Mr. Shubham Manchanda from UT Dallas; and Mr. Vishal Sethi from Richard King High School for their technical help, software support, proof reading, literature search, and reference check.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Sethi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepu, R.S.P., Dostal, D.E., Garcia, C. et al. Cardiac dysfunction subsequent to chronic ozone exposure in rats. Mol Cell Biochem 360, 339–345 (2012). https://doi.org/10.1007/s11010-011-1073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1073-1

Keywords

Navigation