Skip to main content

Advertisement

Log in

Characterization and functional analysis of the 5′-flanking promoter region of the mouse Tcf3 gene

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tcf3 is a nuclear mediator of canonical Wnt signaling which functions in many systems as a repressor of target gene transcription. In this study, we have cloned and characterized a 6.7 kb fragment of the 5′-flanking promoter region of the mouse Tcf3 gene. In silico analysis of the promoter sequence identified the existence of GC boxes and CpG islands, but failed to identify any TATA box. In addition, the promoter sequence contained putative binding sites for multiple transcription factors, including a few known to regulate the function of mTcf3. Of those, we confirmed functional binding sites for NFκB and Oct1 using a luciferase assay and ChIP. In vitro analysis revealed five potential transcription start sites which resulted in a 298 base pair 5′-untranslated region upstream of the mTcf3 translation start site ATG. Using a luciferase assay, we analyzed the activity of the cloned promoter fragment in embryonically derived neural stem cells. The luciferase activity of a 3.5 kb core promoter fragment (−3243/+211) showed up to 40-fold increased activity compared to the empty vector. Addition of sequences 5′ to the 3.5 kb core promoter fragment resulted in a 20-fold drop in luciferase activity, indicating the presence of further upstream repressive elements. In vivo analysis of a 4.5 kb promoter fragment (−4303/+211) driving, the expression of EGFP in mouse embryos highly resembled endogenous expression of mTcf3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA (2008) Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22:746–755

    Article  PubMed  CAS  Google Scholar 

  2. Pereira L, Yi F, Merrill BJ (2006) Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Mol Cell Biol 26:7479–7491

    Article  PubMed  CAS  Google Scholar 

  3. Yi F, Pereira L, Merrill BJ (2008) Tcf3 functions as a steady-state limiter of transcriptional programs of mouse embryonic stem cell self-renewal. Stem Cells 26:1951–1960

    Article  PubMed  CAS  Google Scholar 

  4. Tam WL, Lim CY, Han J et al (2008) T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells 26:2019–2031

    Article  PubMed  CAS  Google Scholar 

  5. Merrill BJ, Gat U, DasGupta R, Fuchs E (2001) Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev 15:1688–1705

    Article  PubMed  CAS  Google Scholar 

  6. Nguyen H, Rendl M, Fuchs E (2006) Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127:171–183

    Article  PubMed  CAS  Google Scholar 

  7. Nguyen H, Merrill BJ, Polak L et al (2009) Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat Genet 41:1068–1075

    Article  PubMed  CAS  Google Scholar 

  8. Kim CH, Oda T, Itoh M et al (2000) Repressor activity of headless/Tcf3 is essential for vertebrate head formation. Nature 407:913–916

    Article  PubMed  CAS  Google Scholar 

  9. Houston DW, Kofron M, Resnik E et al (2002) Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3. Development 129:4015–4025

    PubMed  CAS  Google Scholar 

  10. Korinek V, Barker N, Willert K et al (1998) Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse. Mol Cell Biol 18:1248–1256

    PubMed  CAS  Google Scholar 

  11. Galceran J, Farinas I, Depew MJ, Clevers H, Grosschedl R (1999) Wnt3a−/−-like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice. Genes Dev 13:709–717

    Article  PubMed  CAS  Google Scholar 

  12. Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein JL, Grosschedl R (2000) Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 127:469–482

    PubMed  CAS  Google Scholar 

  13. Merrill BJ, Pasolli HA, Polak L et al (2004) Tcf3: a transcriptional regulator of axis induction in the early embryo. Development 131:263–274

    Article  PubMed  CAS  Google Scholar 

  14. Machon O, van den Bout CJ, Backman M, Kemler R, Krauss S (2003) Role of beta-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122:129–143

    Article  PubMed  CAS  Google Scholar 

  15. van den Bout CJ, Machon O, Rosok O, Backman M, Krauss S (2002) The mouse enhancer element D6 directs Cre recombinase activity in the neocortex and the hippocampus. Mech Dev 110:179–182

    Article  PubMed  Google Scholar 

  16. Spieker N, Peterson J, Reneman S, Destree O (2004) Analysis of the Tcf-3 promoter during early development of Xenopus. Dev Dyn 231:510–517

    Article  PubMed  CAS  Google Scholar 

  17. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103:1412–1417

    Article  PubMed  CAS  Google Scholar 

  18. Kadonaga JT (2002) The DPE, a core promoter element for transcription by RNA polymerase II. Exp Mol Med 34:259–264

    PubMed  CAS  Google Scholar 

  19. Kim TH, Barrera LO, Zheng M et al (2005) A high-resolution map of active promoters in the human genome. Nature 436:876–880

    Article  PubMed  CAS  Google Scholar 

  20. Heinzel T, Lavinsky RM, Mullen TM et al (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48

    Article  PubMed  CAS  Google Scholar 

  21. Sommer A, Hilfenhaus S, Menkel A et al (1997) Cell growth inhibition by the Mad/Max complex through recruitment of histone deacetylase activity. Curr Biol 7:357–365

    Article  PubMed  CAS  Google Scholar 

  22. Javahery R, Khachi A, Lo K, Zenzie-Gregory B, Smale ST (1994) DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol Cell Biol 14:116–127

    PubMed  CAS  Google Scholar 

  23. Pelengaris S, Khan M (2003) The many faces of c-MYC. Arch Biochem Biophys 416:129–136

    Article  PubMed  CAS  Google Scholar 

  24. Sun Y, Li H, Liu Y, Mattson MP, Rao MS, Zhan M (2008) Evolutionarily conserved transcriptional co-expression guiding embryonic stem cell differentiation. PLoS ONE 3:e3406

    Article  PubMed  Google Scholar 

  25. Kovacs KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux JR (2003) CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation. J Biol Chem 278:36959–36965

    Article  PubMed  CAS  Google Scholar 

  26. Schutze S, Machleidt T, Kronke M (1992) Mechanisms of tumor necrosis factor action. Semin Oncol 19:16–24

    PubMed  CAS  Google Scholar 

  27. Kang J, Gemberling M, Nakamura M et al (2009) A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress. Genes Dev 23:208–222

    Article  PubMed  CAS  Google Scholar 

  28. Frith MC, Valen E, Krogh A, Hayashizaki Y, Carninci P, Sandelin A (2008) A code for transcription initiation in mammalian genomes. Genome Res 18:1–12

    Article  PubMed  CAS  Google Scholar 

  29. FitzGerald PC, Shlyakhtenko A, Mir AA, Vinson C (2004) Clustering of DNA sequences in human promoters. Genome Res 14:1562–1574

    Article  PubMed  CAS  Google Scholar 

  30. Tokusumi Y, Ma Y, Song X, Jacobson RH, Takada S (2007) The new core promoter element XCPE1 (X Core Promoter Element 1) directs activator-, mediator-, and TATA-binding protein-dependent but TFIID-independent RNA polymerase II transcription from TATA-less promoters. Mol Cell Biol 27:1844–1858

    Article  PubMed  CAS  Google Scholar 

  31. Zhang MQ (2007) Computational analyses of eukaryotic promoters. BMC Bioinform 8(Suppl 6):S3

    Article  Google Scholar 

  32. Matangkasombut O, Auty R, Buratowski S (2004) Structure and function of the TFIID complex. Adv Protein Chem 67:67–92

    Article  PubMed  CAS  Google Scholar 

  33. Kaczynski J, Cook T, Urrutia R (2003) Sp1- and Kruppel-like transcription factors. Genome Biol 4:206

    Article  PubMed  Google Scholar 

  34. Smale ST (1997) Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim Biophys Acta 1351:73–88

    PubMed  CAS  Google Scholar 

  35. Dahmane N, Lee J, Robins P, Heller P, Altaba A (1997) Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389:876–881

    Article  PubMed  CAS  Google Scholar 

  36. Quint K, Stintzing S, Alinger B et al (2009) The expression pattern of PDX-1, SHH, patched and Gli-1 is associated with pathological and clinical features in human pancreatic cancer. Pancreatology 9:116–126

    Article  PubMed  CAS  Google Scholar 

  37. Kasper M, Regl G, Frischauf AM, Aberger F (2006) GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer 42:437–445

    Article  PubMed  CAS  Google Scholar 

  38. Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva JO (2008) Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells 26:2361–2371

    Article  PubMed  CAS  Google Scholar 

  39. Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B (2006) Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci 7:64

    Article  PubMed  Google Scholar 

  40. Takei Y, Laskey R (2008) Tumor necrosis factor alpha regulates responses to nerve growth factor, promoting neural cell survival but suppressing differentiation of neuroblastoma cells. Mol Biol Cell 19:855–864

    Article  PubMed  CAS  Google Scholar 

  41. Garrick D, Fiering S, Martin DI, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18:56–59

    Article  PubMed  CAS  Google Scholar 

  42. Clark AJ, Bissinger P, Bullock DW et al (1994) Chromosomal position effects and the modulation of transgene expression. Reprod Fertil Dev 6:589–598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was funded by the Norwegian Research Council (Grant no. 174938/130). The authors thank Monika Gelazauskaite for excellent technical help with cloning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Solberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Identification of transcriptional start sites using 5′RACE. (a) Outer and inner PCR on mouse embryo RNA and mouse thymus RNA. Outer and inner positive control for 5′RACE on mouse embryo RNA is shown with gene specific primers to the right of the second ladder. Positive and negative control for 5′RACE on mouse thymus RNA is seen to the right. The inner Race PCR products were further cloned into the pCR-Blunt vector. (b) Ten colonies from mouse embryo RNA derived clones were randomly picked and analyzed with EcoRI restriction enzyme before sequencing. Clone ten was discarded due to the appearance of two bands. (c) Representative M13 fwd/rev PCR product analysis of 35 clones derived from mouse thymus RNA. Together these clones revealed five transcription start sites which are indicated with bold letters in Fig. 2. (TIFF 4318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solberg, N., Machon, O. & Krauss, S. Characterization and functional analysis of the 5′-flanking promoter region of the mouse Tcf3 gene. Mol Cell Biochem 360, 289–299 (2012). https://doi.org/10.1007/s11010-011-1068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1068-y

Keywords

Navigation