Skip to main content
Log in

Differential response to CoCl2-stimulated hypoxia on HIF-1α, VEGF, and MMP-2 expression in ligament cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The adult human anterior cruciate ligament (ACL) has a poor functional healing response, whereas the medial collateral ligament (MCL) does not. The difference in intrinsic properties of these ligament cells can be due to their different response to their located microenvironment. Hypoxia is a key environmental regulator after ligament injury. In this study, we investigated the differential response of ACL and MCL fibroblasts to hypoxia on hypoxia-inducible factor-1α, vascular endothelial growth factor, and matrix metalloproteinase-2 (MMP-2) expression. Our results show that ACL cells responded to hypoxia by up-regulating the HIF-1α expression significantly as compared to MCL cells. We also observed that in MCL fibroblasts response to hypoxia resulted in increase in expression of VEGF as compared to ACL fibroblasts. After hypoxia treatment, mRNA and protein levels of MMP-2 increased in both ACL and MCL. Furthermore we found in ACL pro-MMP-2 was converted more into active form. However, hypoxia decreased the percentage of wound closure for both ligament cells and had a greater effect on ACL fibroblasts. These results demonstrate that ACL and MCL fibroblasts respond differently under the hypoxic conditions suggesting that these differences in intrinsic properties may contribute to their different healing responses and abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Woo SL, Chan SS, Yamaji T (1997) Biomechanics of knee ligament healing, repair and reconstruction. J Biomech 30:431–439

    Article  PubMed  CAS  Google Scholar 

  2. Louboutin H, Debarge R, Richou J et al (2009) Osteoarthritis in patients with anterior cruciate ligament rupture: a review of risk factors. Knee 16:239–244

    Article  PubMed  Google Scholar 

  3. Oiestad BE, Engebretsen L, Storheim K et al (2009) Knee osteoarthritis after anterior cruciate ligament injury a systematic review. Am J Sports Med 37:1434–1443

    Article  PubMed  Google Scholar 

  4. Yang L, Tsai CM, Hsieh AH et al (1999) Adhesion strength differential of human ligament fibroblasts to collagen types I and III. J Orthop Res 17:755–762

    Article  PubMed  CAS  Google Scholar 

  5. Witkowski J, Yang L, Wood DJ et al (1997) Migration and healing of ligament cells under inflammatory conditions. J Orthop Res 15:269–277

    Article  PubMed  CAS  Google Scholar 

  6. Sung KL, Yang L, Whittemore DE et al (1996) The differential adhesion forces of anterior cruciate and medial collateral ligament fibroblasts: effects of tropomodulin, talin, vinculin, and alpha-actinin. Proc Natl Acad Sci USA 93:9182–9187

    Article  PubMed  CAS  Google Scholar 

  7. Zhang J, Yang L, Tang Z et al (2009) Expression of MMPs and TIMPs family in human ACL and MCL Fibroblasts. Connect Tissue Res 50:7–13

    Article  PubMed  CAS  Google Scholar 

  8. Tang Z, Yang L, Wang Y et al (2009) Contributions of different intraarticular tissues to the acute phase elevation of synovial fluid MMP-2 following rat ACL rupture. J Orthop Res 27:243–248

    Article  PubMed  CAS  Google Scholar 

  9. Wang P, Yang L, You X et al (2009) Mechanical stretch regulates the expression of matrix metalloproteinase in rheumatoid arthritis fibroblast-like synoviocytes. Connect Tissue Res 50:98–109

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Yang L, Zhang J et al (2010) Differential MMP-2 activity induced by mechanical compression and inflammatory factors in human synoviocytes. Mol Cell Biomech 7:105–114

    PubMed  Google Scholar 

  11. Zhou D, Lee HS, Villarreal F et al (2005) Differential MMP-2 activity of ligament cells under mechanical stretch injury: an in vitro study on human ACL and MCL fibroblasts. J Orthop Res 23:949–957

    Article  PubMed  CAS  Google Scholar 

  12. Hsieh AH, Tsai CM, Ma QJ et al (2000) Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J Orthop Res 18:220–227

    Article  PubMed  CAS  Google Scholar 

  13. Tang Z, Yang L, Xue R et al (2009) Differential expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after a mechanical injury: involvement of the p65 subunit of NF-kappaB. Wound Repair Regen 17:709–716

    Article  PubMed  Google Scholar 

  14. Gaber T, Dziurla R, Tripmacher R et al (2005) Hypoxia inducible factor (HIF) in rheumatology: low O2! See what HIF can do! Ann Rheum Dis 64:971–980

    Article  PubMed  CAS  Google Scholar 

  15. Kofoed H (1986) Synovitis causes hypoxia and acidity in synovial fluid and subchondral bone. Injury 17:391–394

    Article  PubMed  CAS  Google Scholar 

  16. Cha HS, Ahn KS, Jeon CH et al (2003) Influence of hypoxia on the expression of matrix metalloproteinase-1,-3 and tissue inhibitor of metalloproteinase-1 in rheumatoid synovial fibroblasts. Clin Exp Rheumatol 21:593–598

    PubMed  CAS  Google Scholar 

  17. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  18. Petersen W, Tillmann B (1999) Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Embryol (Berl) 200:325–334

    Article  CAS  Google Scholar 

  19. Warner TD, Mitchell JA (2003) HIF, stretching to get control of VEGF. Clin Sci (Lond) 105:393–394

    Article  CAS  Google Scholar 

  20. Hong KH, Yoo SA, Kang SS et al (2006) Hypoxia induces expression of connective tissue growth factor in scleroderma skin fibroblasts. Clin Exp Immunol 146:362–370

    Article  PubMed  CAS  Google Scholar 

  21. Petersen W, Varoga D, Zantop T et al (2004) Cyclic strain influences the expression of the vascular endothelial growth factor (VEGF) and the hypoxia inducible factor 1 alpha (HIF-1 alpha) in tendon fibroblasts. J Orthop Res 22:847–853

    Article  PubMed  CAS  Google Scholar 

  22. Wang Y, Tang Z, Xue R et al (2011) TGF-beta1 promoted MMP-2 mediated wound healing of anterior cruciate ligament fibroblasts through NF-kappaB. Connect Tissue Res 52:218–225

    Article  PubMed  CAS  Google Scholar 

  23. Wang Y, Tang Z, Xue R et al (2011) Combined effects of TNF-alpha, IL-1beta, and HIF-1alpha on MMP-2 production in ACL fibroblasts under mechanical stretch: an in vitro study. J Orthop Res 29:1008–1014

    Article  PubMed  CAS  Google Scholar 

  24. Johnstone CC, Farley A (2005) The physiological basics of wound healing. Nurs Stand 19: 59-65; quiz 66

  25. Tandara AA, Mustoe TA (2004) Oxygen in wound healing—more than a nutrient. World J Surg 28:294–300

    Article  PubMed  Google Scholar 

  26. Ardyanto TD, Osaki M, Tokuyasu N et al (2006) CoCl2-induced HIF-1alpha expression correlates with proliferation and apoptosis in MKN-1 cells: a possible role for the PI3K/Akt pathway. Int J Oncol 29:549–555

    PubMed  CAS  Google Scholar 

  27. Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350

    Article  PubMed  CAS  Google Scholar 

  28. Finger EC, Giaccia AJ (2010) Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29:285–293

    Article  PubMed  CAS  Google Scholar 

  29. Petersen W, Pufe T, Zantop T et al (2003) Hypoxia and PDGF have a synergistic effect that increases the expression of the angiogenetic peptide vascular endothelial growth factor in Achilles tendon fibroblasts. Arch Orthop Trauma Surg 123:485–488

    Article  PubMed  Google Scholar 

  30. Kondo S, Kubota S, Shimo T et al (2002) Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 23:769–776

    Article  PubMed  CAS  Google Scholar 

  31. Yoshikawa T, Tohyama H, Katsura T et al (2006) Effects of local administration of vascular endothelial growth factor on mechanical characteristics of the semitendinosus tendon graft after anterior cruciate ligament reconstruction in sheep. Am J Sports Med 34:1918–1925

    Article  PubMed  Google Scholar 

  32. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665

    Article  PubMed  CAS  Google Scholar 

  33. Murata M, Yudoh K, Nakamura H et al (2006) Distinct signaling pathways are involved in hypoxia- and IL-1-induced VEGF expression in human articular chondrocytes. J Orthop Res 24:1544–1554

    Article  PubMed  CAS  Google Scholar 

  34. Olszewska-Pazdrak B, Hein TW, Olszewska P et al (2009) Chronic hypoxia attenuates VEGF signaling and angiogenic responses by downregulation of KDR in human endothelial cells. Am J Physiol Cell Physiol 296:C1162–C1170

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Innovation and Attracting Talents Program for College and University (‘111’ Project) (B06023), The Fundamental Research Funds for the Central Universities (CDJXS11231176), National Natural Science Foundation of China (11032012), and Key Science and Technology Program of CQ CSTC (2009AA5045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Tang, Z., Xue, R. et al. Differential response to CoCl2-stimulated hypoxia on HIF-1α, VEGF, and MMP-2 expression in ligament cells. Mol Cell Biochem 360, 235–242 (2012). https://doi.org/10.1007/s11010-011-1061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1061-5

Keywords

Navigation