Skip to main content
Log in

Acute hyperhomocysteinemia alters the coagulation system and oxidative status in the blood of rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In the present study, we investigated the effect of the acute administration of homocysteine (Hcy) on parameters of the coagulation system, as well as fibrinogen and nitrite levels in the blood of rats. In addition, we evaluated the effect of acute hyperhomocysteinemia on thiobarbituric acid-reactive substances in plasma and on antioxidant enzymes activities (superoxide dismutase, catalase, and gluthatione peroxidase) in the erythrocytes of rats. Wistar rats, aged 29 days, received a single subcutaneous dorsal injection of saline (control) or Hcy (0.6 μmol/g body weight). Fifteen minutes, 1 h, 6 h or 12 h after the injection, the rats were euthanized and the blood, plasma, and erythrocytes were collected. Results showed that Hcy significantly increased platelet count in the blood and plasma fibrinogen levels of rats at 15 min and 1 h, but not at 6 h and 12 h, when compared with the control group. Prothrombin time, activated partial thromboplastin time, and nitrite levels significantly decreased in plasma at 15 min and 1 h, but not at 6 h and 12 h after Hcy administration. In addition, hyperhomocysteinemia increased thiobarbituric acid-reactive, an index of lipid peroxidation, in plasma at 15 min and 1 h; decreased the superoxide dismutase and gluthatione peroxidase activity, and increased the catalase activity at 15 min in erythrocytes of rats, suggesting that acute Hcy administration may alter the oxidative status in the blood of rats. Our findings suggest that hypercoagulability and oxidative stress can occur after acute hyperhomocysteinemia, possibly in association, at least in part, with the vascular dysfunction and thromboembolic complications observed in homocystinuric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mudd SH, Levy HL, Skovby F (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1279–1327

    Google Scholar 

  2. de Jong SC, van den Berg M, Rauwerda JA, Stehouwer CD (1998) Hyperhomocysteinemia and atherothrombotic disease. Semin Thromb Hemost 24:381–385

    Article  PubMed  Google Scholar 

  3. Cattaneo M (1999) Hyperhomocysteinemia, atherosclerosis and thrombosis. Thromb Haemost 81:165–176

    PubMed  CAS  Google Scholar 

  4. Lawrence de Koning AB, Werstuck GH, Zhou J, Austin RC (2003) Hyperhomocysteinemia and its role in the development of atherosclerosis. Clin Biochem 36:431–441

    Article  PubMed  CAS  Google Scholar 

  5. Cook JW, Taylor LM, Orloff SL, Landry GJ, Moneta GL, Porter JM (2002) Homocysteine and arterial disease. Exper Mech Vascul Pharmacol 38:293–300

    Article  CAS  Google Scholar 

  6. Luo F, Liu X, Wang S, Chen H (2006) Effect of homocysteine on platelet activation induced by collagen. Nutrition 22:69–75

    Article  PubMed  Google Scholar 

  7. Kurata M, Horii I (2004) Blood coagulation tests in toxicological studies-review of methods and their significance for drug safety assessment. J Toxicol Sci 29:13–32

    Article  PubMed  CAS  Google Scholar 

  8. Biousse V (2003) The coagulation system. J Neuroophthalmol 23:50–62

    Article  PubMed  Google Scholar 

  9. Perla-Kajan J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–572

    Article  PubMed  CAS  Google Scholar 

  10. Upchurch GR Jr, Welch GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF Jr, Loscalzo J (1997) Homocysteine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017

    Article  PubMed  CAS  Google Scholar 

  11. Mutus B, Rabini RA, Staffolani R, Ricciotti R, Fumelli P, Moretti N, Martarelli D, Mazzanti L (2001) Homocysteine-induced inhibition of nitric oxide production in platelets: a study on healthy and diabetic subjects. Diabetologia 44:979–982

    Article  PubMed  CAS  Google Scholar 

  12. Signorello M, Pascale R, Leoncini G (2002) Effect of homocysteine on arachidonic acid release in human platelets. Eur J Clin Invest 32:279–284

    Article  PubMed  CAS  Google Scholar 

  13. Jeremy JY, Rowe D, Emsley AM, Newby AC (1999) Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc Res 43:580–594

    Article  PubMed  CAS  Google Scholar 

  14. Streck EL, Vieira PS, Wannmacher CM, Dutra-Filho C, Wajner M, Wyse AT (2003) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18:147–154

    Article  PubMed  CAS  Google Scholar 

  15. Matté C, Monteiro SC, Calcagnotto T, Bavaresco CS, Netto CA, Wyse AT (2004) In vivo and in vitro effects of homocysteine on Na+ , K+ -ATPase activity in parietal, prefrontal and cingulate cortex of young rats. Int J Dev Neurosci 22:185–190

    Article  PubMed  Google Scholar 

  16. Matté C, Mackedanz V, Stefanello FM, Scherer EB, Andreazza AC, Zanotto C, Moro AM, Garcia SC, Gonçalves CA, Erdtmann B, Salvador M, Wyse AT (2009) Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood os rats: protective effect of folic acid. Neurochem Int 54:7–13

    Article  PubMed  Google Scholar 

  17. Kolling J, Scherer EB, da Cunha AA, da Cunha MJ, Wyse AT (2011) Homocysteine induces oxidative-nitrative stress in heart of rats: prevention by folic acid. Cardiovasc Toxicol 11:67–73

    Article  PubMed  CAS  Google Scholar 

  18. Streck EL, Matté C, Vieira PS, Rombaldi F, Wannmacher CM, Wajner M, Wyse AT (2002) Reduction of Na+, K+-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27:1593–1598

    Article  PubMed  CAS  Google Scholar 

  19. de Oliveira LM, Pires MG, Magrisso AB, Munhoz TP, Roesler R, de Oliveira JR (2010) Fructose-1, 6-bisphosphate inhibits in vitro and ex vivo platelet aggregation induced by ADP and ameliorates coagulation alterations in experimental sepsis in rats. J Thromb Thrombolysis 29:387–394

    Article  PubMed  CAS  Google Scholar 

  20. Ignarro LJ, Fukuto JM, Griscavage JM, Rogers NE, Byrns RE (1993) Oxidation of nitric oxide in aqueous solution to nitrite but not to nitrate: comparison with enzymatically formed nitric oxide from l-arginine. Proc Natl Acad Sci USA 90:8103–8107

    Article  PubMed  CAS  Google Scholar 

  21. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15 N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  22. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  23. Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 243–247

    Google Scholar 

  24. Aebi H (1984) Catalase, in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  25. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  PubMed  CAS  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  27. Coppola A, Davi G, De Stefano V, Mancini FP, Cerbone AM, Di Minno G (2000) Homocysteine, coagulation, platelet function, and thrombosis. Semin Thromb Hemost 26:243–254

    Article  PubMed  CAS  Google Scholar 

  28. Wall RT, Harlan JM, Harker LA, Striker GE (1980) Homocysteine-induced endothelial cell injury in vitro: a model for the study of vascular injury. Thromb Res 18:113–121

    Article  PubMed  CAS  Google Scholar 

  29. Silverman MD, Tumuluri RJ, Davis M, Lopez G, Rosenbaum JT, Lelkes PI (2002) Homocysteine unregulates vascular cell adhesion molecule-1 expression in cultured aortic endothelial cells and enhances monocyte adhesion. Arterioscler Thromb Vasc Biol 22:587–592

    Article  PubMed  CAS  Google Scholar 

  30. Koga T, Claycombe K, Meydani M (2002) Homocysteine increases monocyte and T-cell adhesion to human aortic endothelial cells. Atherosclerosis 161:365–374

    Article  PubMed  CAS  Google Scholar 

  31. Wang J, Dudman NP, Wilcken DE (1993) Effect of homocysteine and related compounds on prostacyclin production by cultured human vascular endothelial cells. Thromb Haemost 70:1047–1052

    PubMed  CAS  Google Scholar 

  32. Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, Loscalzo J (1993) Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 91:308–318

    Article  PubMed  CAS  Google Scholar 

  33. Weiss N, Keller C, Hoffmann U, Loscalzo J (2002) Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 7:227–239

    Article  PubMed  Google Scholar 

  34. Rodgers GM, Kane WH (1986) Activation of endogenous factor V by a homocysteine-induced vascular endothelial cell activator. J Clin Invest 77:1909–1916

    Article  PubMed  CAS  Google Scholar 

  35. Mujumdar VS, Aru GM, Tyagi SC (2001) Induction of oxidative stress by homocysteine impairs endothelial function. J Cell Biochem 82:491–500

    Article  PubMed  CAS  Google Scholar 

  36. Wyse AT, Zugno AI, Streck EL, Matté C, Calcagnotto T, Wannmacher CM, Wajner M (2002) Inhibition of Na+, K+-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689

    Article  PubMed  CAS  Google Scholar 

  37. Lenz SR, Sadler JE (1990) Inhibition of thrombomodulin surface expression and protein C activation by thrombogenic homocysteine. Blood 88:1900–1904

    Google Scholar 

  38. Mohan IV, Jagroop IA, Mikhailidis DP, Stansby GP (2008) Homocysteine activates platelets in vitro. Clin Appl Thromb Hemost 14:8–18

    Article  PubMed  CAS  Google Scholar 

  39. Di Minno G, Davi G, Margaglione M, Cirillo F, Grandone E, Ciabattoni G, Catalano I, Strisciuglio P, Andria G, Patrono C (1993) Abnormally high thromboxane biosynthesis in homozygous homocystinuria. Evidence for platelet involvement and a probucol-sensitive mechanism. J Clin Invest 92:1400–1406

    Article  PubMed  CAS  Google Scholar 

  40. Zanin RF, Campesato LF, Braganhol E, Schetinger MR, Wyse AT, Battastini AM (2010) Homocysteine decreases extracellular nucleotide hydrolysis in rat platelets. Thromb Res 125:87–92

    Article  Google Scholar 

  41. Ebbesen LS, Ingerslev J (2005) Folate deficiency-induced hyperhomocysteinemia attenuates, and folic acid supplementation restores, the functional activities of rat coagulation factors XII, X, and II. J Nutr 135:1836–1840

    PubMed  CAS  Google Scholar 

  42. Koster T, Blann AD, Briet E, Vandenbroucke JP, Rosendaal FR (1995) Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet 345:152–155

    Article  PubMed  CAS  Google Scholar 

  43. O`Donnell J, Mumford AD, Manning RA, Laffan M (2000) Elevation of FVIII: C in venous thromboembolism is persistent and independent of the acute phase response. Thromb Haemost 83:10–13

    CAS  Google Scholar 

  44. Bombeli T, Jutzi M, De Conno E, Seifert B, Fehr J (2002) In patients with deep-vein thrombosis elevated levels of factor VIII correlate only with von Willebrand factor but not other endothelial cell-derived coagulation and fibrinolysis proteins. Blood Coagul Fibrinolysis 13:577–581

    Article  PubMed  CAS  Google Scholar 

  45. Lijfering WM, Veeger NJ, Brouwer JL, van der Meer J (2007) The risk of venous and arterial thrombosis in hyperhomocysteinemic subjects may be a result of elevated factor VIII levels. Haematologica 92:1703–1706

    Article  PubMed  CAS  Google Scholar 

  46. Maclean KN, Sikora J, Kožich V, Jiang H, Greiner LS, Kraus E, Krijt J, Overdier KH, Collard R, Brodsky GL, Meltesen L, Crnic LS, Allen RH, Stabler SP, Elleder M, Rozen R, Patterson D, Kraus JP (2010) Mol Genet Metab 101:153–162

    Article  PubMed  CAS  Google Scholar 

  47. Quick AJ, Stanley-Brown M, Bancroft FW (1935) A study of the coagulation defect in hemophilia and jaundice. Am J Med Sci 190:501–511

    Article  Google Scholar 

  48. Proctor RR, Rapaport SI (1961) The partial thromboplastin time with kaolin. Am J Clin Pathol 36:212–219

    PubMed  CAS  Google Scholar 

  49. Ebbesen LS, Olesen SH, Kruhoffer M, Ingerslev J, Orntoff TF (2006) Folate deficiency induced hyperhomocysteinemia changes the expression of thrombosis-related genes. Blood Coagul Fibrinolysis 17:293–301

    Article  PubMed  CAS  Google Scholar 

  50. Sauls DL, Wolberg AS, Hoffman M (2003) Elevated plasma homocysteine leads to alterations in fibrin clot structure and stability: implications for the mechanism of thrombosis in hyperhomocysteinemia. J Thromb Haemost 1:300–306

    Article  PubMed  CAS  Google Scholar 

  51. Kuhli C, Scharrer I, Koch F, Ohrloff C, Hattenbach LO (2004) Factor XII deficiency: a thrombophilic risk factor for retinal vein occlusion. Am J Ophthalmol 137:459–464

    Article  PubMed  CAS  Google Scholar 

  52. Roberts HR, Monroe DM, Hoffman M (2001) Molecular biology and biochemistry of the coagulation factors and pathways of hemostasis. In: Beutler E, Lichtman MA, Coller BS, Kipps TJ, Seligsohn U (eds) McGraw-Hill, New York, pp 1409–1433

  53. Hantgan RR, Simpson-Haidaris PJ, Francis CW, Marder VJ (2001) Fibrinogen structure and physiology. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN (eds) Hemostasis and thrombosis: basic principles and clinical practice. Lippincott Williams and Wilkins, Philadelphia, pp 203–232

    Google Scholar 

  54. Zwaginga JJ, Koomans HA, Sixma JJ, Rabelink TJ (1994) Thrombus formation and platelet-vessel wall interaction in the nephrotic syndrome under flow conditions. J Clin Invest 93:204–211

    Article  PubMed  CAS  Google Scholar 

  55. Gardner SY, Lehmann JR, Costa DL (2000) Oil fly ash-induced elevation of plasma fibrinogen levels in rats. Toxicol Sci 56:175–180

    Article  PubMed  CAS  Google Scholar 

  56. da Cunha AA, Ferreira AG, Wyse AT (2010) Incresed inflammatory markers in brain and blood of rats subjected to acute homocysteine administration. Metab Brain Dis 25:199–206

    Article  PubMed  Google Scholar 

  57. Karolczak K, Olas B (2009) Mechanism of action of homocysteine and its thiolactone in hemostasis system. Physiol Res 58:623–633

    PubMed  CAS  Google Scholar 

  58. Zhang X, Li H, Jin H, Ebin Z, Brodsky S, Goligorsky MS (2002) Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol 279:F671–F678

    Google Scholar 

  59. Rekka EA, Chrysselis MC (2002) Nitric oxide in atherosclerosis. Mini Rev Med Chem 2:585–593

    Article  PubMed  CAS  Google Scholar 

  60. Upchurch GR Jr, Welch GN, Fabian AJ, Pigazzi A, Keaney JF Jr, Loscalzo J (1997) Stimulation of endothelial nitric oxide production by homocysteine. Atherosclerosis 132:177–185

    Article  PubMed  CAS  Google Scholar 

  61. de Groote MA, Testerman T, Xu Y, Stauffer G, Fang FC (1996) Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium. Science 272:414–417

    Article  PubMed  Google Scholar 

  62. Leoncini G, Pascale R, Signorello MG (2003) Effects of homocysteine on l-arginine transport and nitric levels formation in human platelets. Eur J Clin Investig 33:713–719

    Article  CAS  Google Scholar 

  63. Fischer PA, Dominguez GN, Cuniberti LA, Martinez V, Werba JP, Ramirez AJ, Masnatta LD (2003) Hyperhomocysteinemia induces renal hemodynamic dysfunction: is nitric oxide involved? J Am Soc Nephrol 14:653–660

    Article  PubMed  Google Scholar 

  64. Ignarro LJ, Gruetter CA (1980) Requirement of thiols for activation of coronary arterial guanylate cyclase by glyceryl trinitrate and sodium nitrite: possible involvement of S-nitrosothiols. Biochim Biophys Acta 631:221–231

    Article  PubMed  CAS  Google Scholar 

  65. Nishio E, Watanabe Y (1997) Homocysteine as a modulator of platelet-derived growth factor action in vascular smooth muscle cells: a possible role for hydrogen peroxide. Br J Pharmacol 122:269–274

    Article  PubMed  CAS  Google Scholar 

  66. Tyagi SC (1998) Homocystine redox receptor and regulation of extracellular matrix components in vascular cells. Am J Physiol 274:C396–C405

    PubMed  CAS  Google Scholar 

  67. Welch GN, Upchurch GR Jr, Farivar RS, Pigazzi A, Vu K, Brecher P, Keaney JF Jr, Loscalzo J (1998) Homocysteine-induced nitric oxide production in vascular smooth-muscle cells by NF-kappaB-dependent transcriptional activation of Nos2. Proc Assoc Am Physicians 110:22–31

    PubMed  CAS  Google Scholar 

  68. Heinecke JW (1988) Superoxide mediated oxidation of low-density lipoproteins by thiols. In: Gerutti PA, Gerutti JM, McCord I, Fridovich I (eds) Oxy-radicals in molecular biology and pathology. Alan R. Liss, New York, pp 433–457

    Google Scholar 

  69. Matté C, Stefanello FM, Mackedanz V, Pederzolli CD, Lamers ML, Dutra-Filho CS, dos Santos MF, Wyse AT (2009) Homocysteine induces oxidative stress, inflammatory infiltration, fibrosis and reduces glycogen/glycoprotein content in liver of rats. Int J Dev Neurosci 27:337–344

    Article  PubMed  Google Scholar 

  70. Loscalzo J (1996) The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest 98:5–7

    Article  PubMed  CAS  Google Scholar 

  71. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, New York, pp 79–185

    Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq–Brazil) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS). The authors thank João Leandro Gambino Teixeira for their collaboration and technical assistance and Laboratório Nobel RIE Ltda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Cunha, A.A., Scherer, E., da Cunha, M.J. et al. Acute hyperhomocysteinemia alters the coagulation system and oxidative status in the blood of rats. Mol Cell Biochem 360, 205–214 (2012). https://doi.org/10.1007/s11010-011-1058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1058-0

Keywords

Navigation