Skip to main content
Log in

Reactive oxygen species mediated tissue damage in high energy proton irradiated mouse brain

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. We recently reported that the high energy protons induce cell death through activation of apoptotic signaling genes; caspase 3 and 8 (Baluchamy et al. J Biol Chem 285:24769–24774, 2010). In this study, we investigated the effect of different doses of protons in in vivo mouse system, particularly, brain tissues. A significant dose-dependent induction of reactive oxygen species and lipid peroxidation and reduction of antioxidants; glutathione and superoxide dismutase were observed in proton irradiated mouse brain as compared to control brain. Furthermore, histopathology studies on proton irradiated mouse brain showed significant tissue damage as compared to control brain. Together, our in vitro and in vivo results suggest that proton irradiation alters oxidant and antioxidant levels in the cells to cause proton mediated DNA/tissue damage followed by apoptotic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Di Pietro C, Piro S, Tabbi G et al (2006) Cellular and molecular effects of protons: apoptosis induction and potential implications for cancer therapy. Apoptosis 11:57–66

    Article  PubMed  CAS  Google Scholar 

  2. Wood DH, Yochmowitz MG, Hardy KA, Salmon YL (1986) Occurrence of brain tumors in rhesus monkeys exposed to 55 MeV protons. Advances Space Res 6:213–216

    Article  CAS  Google Scholar 

  3. Giedzinski E, Rola R, Fike JR, Limoli CL (2005) Efficient production of reactive oxygen species in neural precursor cells after exposure to 250 MeV protons. Radiat Res 164:540–544

    Article  PubMed  CAS  Google Scholar 

  4. Yin E, Nelson DO, Coleman MA, Peterson LE, Wyrobek AJ (2003) Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. Int J Radiat Biol 79:759–775

    Article  PubMed  CAS  Google Scholar 

  5. Mahmoud-Ahmed AS, Atkinson S, Wong S (2006) Early gene expression profile in mouse brain after exposure to ionizing radiation. Radiat Res 165:142–154

    Article  PubMed  CAS  Google Scholar 

  6. Baluchamy S, Zhang Y, Ravichandran P, Ramesh V, Sodipe A, Hall J, Jejelowo O, Gridley DS, Wu H, Ramesh G (2010) Expression profile of DNA damage signaling genes in 2 Gy proton exposed mouse brain. Mol Cell Biochem 341:207–215

    Article  PubMed  CAS  Google Scholar 

  7. Baluchamy S, Zhang Y, Ravichandran P, Ramesh V, Sodipe A, Hall J, Jejelowo O, Gridley DS, Wu H, Ramesh G (2010) Differential oxidative stress gene expression profile in mouse brain after proton exposure in vitro cell. Dev Biol Animal 46:718–725

    Article  CAS  Google Scholar 

  8. Manda K, Reiter RJ (2010) Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation. Prog Neurobiol 90:60–68

    Article  PubMed  CAS  Google Scholar 

  9. Karbownik M, Reiter RJ (2000) Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med 225:9–22

    Article  PubMed  CAS  Google Scholar 

  10. Hollander J, Gore M, Fiebig R, Mazzeo R, Ohishi S, Ohno F, Ji LL (1998) Spaceflight downregulates antioxidant defense systems in rat liver. Free Radic Biol Med 24:385–390

    Article  PubMed  CAS  Google Scholar 

  11. Stein TP, Leskiw MJ (2000) Oxidant damage during and after spaceflight. Am J Physiol Endocrinol Metab 278:375–382

    Google Scholar 

  12. Baluchamy S, Ravichandran P, Periakaruppan A, Ramesh V, Hall J, Zhang Y, Gridle S, Wu H, Ramesh G (2010) Induction of cell death through alteration of oxidants and antioxidants in lung epithelial cells exposed to high energy protons. J Biol Chem 285:24769–24774

    Article  PubMed  CAS  Google Scholar 

  13. Sarkar S, Sharma C, Yog R, Periakaruppan A, Jejelowo O, Thomas R, Barrera EV, Rice-Ficht AC, Wilson BL, Ramesh GT (2007) Analysis of death responsive genes induced by single walled carbon nanotubes in BJ foreskin cells. J Nanosci Nanotechnol 7:584–592

    PubMed  CAS  Google Scholar 

  14. Shaik IH, Mehvar R (2006) Rapid determination of reduced and oxidized glutathione levels using a new thiol masking reagent and the enzymatic recycling method: application to the rat liver and bile samples. Anal Bio Anal Chem 18:264–1618

    Google Scholar 

  15. Decoursey TE, Ligeti E (2005) Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 62:2173–2193

    Article  PubMed  CAS  Google Scholar 

  16. Manna SK, Rangasamy T, Wise K, Sarkar S, Shishodia S, Biswal S, Ramesh GT (2006) Long term environmental tobacco smoke activates nuclear transcription factor-kappa B, activator protein-1, and stress responsive kinases in mouse brain. Biochem Pharmacol 71:1602–1609

    Article  PubMed  CAS  Google Scholar 

  17. Periakaruppan A, Kumar F, Sarkar S, Sharma CS, Ramesh GT (2007) Uranium induces oxidative stress in lung epithelial cells. Arch Toxicol 81:389–395

    Article  Google Scholar 

  18. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-B in human keratinocytes. Nano Lett 5:1676–1684

    Article  PubMed  CAS  Google Scholar 

  19. De Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP (1999) Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med 26:202–226

    Article  PubMed  Google Scholar 

  20. Zhao Y, Kiningham KK, Lin SM, St Clair DK (2001) Overexpression of MnSOD protects murine fibrosarcoma cells (FSa-II) from apoptosis and promotes a differentiation program upon treatment with 5-azacytidine: involvement of MAPK and NFκB pathways. Antioxid Redox Signal 3:375–386

    Article  PubMed  CAS  Google Scholar 

  21. Dominguez-Rodriguez IR, Gomez-Contreras PC, Hernandez-Flores G, Lerma-Diaz JM, Carranco A, Cervantes-Munguia R, Orbach-Arbouys S, Bravo-Cuella A (2001) In vivo inhibition by antioxidants of adriamycin-induced apoptosis in murine peritoneal macrophages. Anti Cancer Res 21:1869–1872

    CAS  Google Scholar 

  22. Shah SD, Chinoy NJ (2004) Adverse effects of fluoride and/or Arsenic on the cerebral hemisphere of mice and recovery by some antidotes. Fluoride 37:162–171

    CAS  Google Scholar 

  23. Engel RH, Evens AM (2006) Oxidative stress and apoptosis: a new treatment paradigm in cancer. Front Biosci 1:300–312

    Article  Google Scholar 

  24. Schimmerling W (2003) Overview of NASA’s space radiation research program. Gravit Space Biol Bull 16:5–10

    PubMed  Google Scholar 

  25. Manda K, Ueno M, Anzai K (2008) Space radiation-induced inhibition of neurogenesis in the hippocampal dentate gyrus and memory impairment in mice: ameliorative potential of the melatonin metabolite, AFMK. J Pineal Res 45:430–438

    Article  PubMed  CAS  Google Scholar 

  26. Manda K, Ueno M, Anzai K (2008) Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of α-lipoic acid. Behav Brain Res 187:387–395

    Article  PubMed  CAS  Google Scholar 

  27. Manda K, Ueno M, Anzai K (2008) Melatonin mitigates oxidative damage and apoptosis in mouse cerebellum induced by high-LET 56Fe particle irradiation. J Pineal Res 44:189–196

    Article  PubMed  CAS  Google Scholar 

  28. Friedman WA, Bova FJ (1992) Linear accelerator radio surgery for arteriovenous malformations. J Neurosurg 77:832–841

    Article  PubMed  CAS  Google Scholar 

  29. Regis I, Barolomei F, Metellus P, Rey M, Genton P, Dravet C, Bureau M, Semah F, Gastaut JL, Chauvel P (1999) Radiosurgery for trigeminal neuralgia and epilepsy. Neurosurg Clin N Am 10:359–377

    PubMed  CAS  Google Scholar 

  30. Spitz DR, Azzam EI, Li JJ, Gius D (2004) Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev 23:311–322

    Article  PubMed  CAS  Google Scholar 

  31. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33

    Article  PubMed  CAS  Google Scholar 

  32. Podia M, Grundmann-Kollmann M (2001) Low molecular weight antioxidants and their role in skin ageing. Clin Exp Dermatol 26:578–582

    Article  Google Scholar 

  33. Sardesai VM (1995) Role of antioxidants in health maintenance. Nutr Clin Pract 10:19–25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. Ramya Gopikrishnan and Mr. Santosh Biradar for helpful suggestions. This study was supported by NASA funding NNX08BA47A: NCC-1-02038: NIH 1P20MD001822-1 to Dr. G.T, R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindarajan T. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baluchamy, S., Ravichandran, P., Ramesh, V. et al. Reactive oxygen species mediated tissue damage in high energy proton irradiated mouse brain. Mol Cell Biochem 360, 189–195 (2012). https://doi.org/10.1007/s11010-011-1056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1056-2

Keywords

Navigation