Skip to main content

Advertisement

Log in

Proteomic analysis of circulating human monocytes in coronary artery disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Monocytes play an important role in inflammation and atherosclerosis; however, the molecular details underlying these diverse functions are not completely understood. Proteomic analysis of monocytes can provide new insights into their biological role in coronary artery disease (CAD). Twenty angiographically confirmed male, CAD patients (≥50% stenosis) attending cardiology clinic of Nehru Hospital, PGIMER, Chandigarh, and who were not receiving any lipid lowering therapy and 20 TMT negative subjects who served as controls were enrolled in the study. Circulating monocytes isolated from overnight fasting blood samples were analyzed by 2D gel electrophoresis (pH 4–7), and differentially expressed protein spots were subjected to mass spectrometry and identification of proteins. We observed 333 ± 40 protein spots in monocytes from patients and 312 ± 20 in controls; out of which 63 protein spots showed altered intensity in CAD patients. Thirteen spots showed fivefold increased and two protein spots showed fivefold decreased expression in CAD group as compared to control group, respectively. Two proteins showing decreased expression in monocytes from CAD patients were identified as: (i) glutathione transferase and (ii) heat shock protein 70 KDa. Proteins showing increased expression in CAD patients were identified as: (i) vimentin, (ii) mannose binding lectin receptor protein, and (iii) S100A8 calcium-binding protein. The results of our study offer identification of several proteins in monocytes which can provide new perspectives in role of monocytes in pathogenesis of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rader DJ, Daugherty A (2008) Translating molecular discoveries into new therapies for atherosclerosis. Nature 451:904–913. doi:10.1038/nature06796

    Article  PubMed  CAS  Google Scholar 

  2. Libby P (2002) Inflammation in atherosclerosis. Nature 20:868–874. doi:10.1038/nature01323

    Article  Google Scholar 

  3. Anderson L (2005) Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol 563:23–60. doi:10.1113/jphysiol.2004.080473

    Article  PubMed  CAS  Google Scholar 

  4. Arab S, Gramolini AO, Ping P, Kislinger T, Stanley B, van Eyk J, Ouzounian M, MacLennan DH, Emili A, Liu PP (2006) Cardiovascular proteomics: tools to develop novel biomarkers and potential applications. J Am Coll Cardiol 48:1733–1741. doi:10.1016/j.jacc.2006.06.063

    Article  PubMed  CAS  Google Scholar 

  5. Arrell DK, Neverova I, Van Eyk JE (2001) Cardiovascular proteomics: evolution and potential. Circ Res 8:763–773. doi:10.1161/hh0801.090193

    Article  Google Scholar 

  6. Jin M, Opalek JM, Marsh CB, Wu HM (2004) Proteome comparison of alveolar macrophages with monocytes reveals distinct protein characteristics. Am J Respir Cell Mol Biol 31:322–329. doi:10.1165/rcmb.2004-0080OC

    Article  PubMed  CAS  Google Scholar 

  7. Hryniewicz-Jankowska A, Choudhary PK, Goodman SR (2007) Variation in monocyte proteome. Exp Biol Med 7:967–976

    Google Scholar 

  8. Jin M, Diaz PT, Bourgeois T, Eng C, Marsh CB, Wu HM (2006) Two-dimensional gel proteome reference map of blood monocytes. Proteome Sci 4:16. doi:10.1186/1477-5956-4-16

    Article  PubMed  Google Scholar 

  9. Barderas MG, Tunon J, Darde VM, De la Cuesta F, Duran MC, Nacher JJ, Tarín N, López-Bescós L, Egido J, Vivanco F (2007) Circulating human monocytes in the acute coronary syndrome express a characteristic proteomic profile. J Proteome Res 6:876–886. doi:10.1021/pr0601990

    Article  PubMed  CAS  Google Scholar 

  10. Barderas MG, Tuñón J, Dardé VM, De la Cuesta F, Jiménez-Nácher JJ, Tarín N, López-Bescós L, Egido J, Vivanco F (2009) Atorvastatin modifies the protein profile of circulating human monocytes after an acute coronary syndrome. Proteomics 7:1982–1993. doi:10.1002/pmic.200700583

    Article  Google Scholar 

  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  12. Hayes JD, Strange RC (1995) Potential contribution of the glutathione S-transferase supergene family to resistance to oxidative stress. Free Radic Res 3:193–207

    Article  Google Scholar 

  13. Yang Y, Trent MB, He N, Lick SD, Zimniak P, Awasthi YC, Boor PJ (2004) Glutathione-S-transferase A4–4 modulates oxidative stress in endothelium: possible role in human atherosclerosis. Atherosclerosis 173:211–221. doi:10.1016/j.atherosclerosis.2003.12.023

    Article  PubMed  CAS  Google Scholar 

  14. Cao Z, Li Y (2002) Chemical induction of cellular antioxidants affords marked protection against oxidative injury in vascular smooth muscle cells. Biochem Biophys Res Commun 292:50–57. doi:10.1006/bbrc.2002.6614

    Article  PubMed  CAS  Google Scholar 

  15. Doney AS, Lee S, Leese GP, Morris AD, Palmer CN (2005) Increased cardiovascular morbidity and mortality in type 2 diabetes is associated with the glutathione S transferase theta-null genotype: a Go-DARTS study. Circulation 22:2927–2934. doi:10.1161/CIRCULATIONAHA.104.509224

    Article  Google Scholar 

  16. Torzewski M, Ochsenhirt V, Kleschyov AL, Oelze M, Daiber A, Li H, Rossmann H, Tsimikas S, Reifenberg K, Cheng F, Lehr HA, Blankenberg S, Förstermann U, Münzel T, Lackner KJ (2007) Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 4:850–857. doi:10.1161/01.ATV.0000258809.47285.07

    Article  Google Scholar 

  17. Vicente-Manzanares M, Sánchez-Madrid F (2004) Role of the cytoskeleton during leukocyte responses. Nat Rev Immunol 4:110–122. doi:10.1038/nri1268

    Article  PubMed  CAS  Google Scholar 

  18. Geiben-Lynn R, Kursar M, Brown NV, Addo MM, Shau H, Lieberman J, Luster AD, Walker BD (2003) HIV-1 antiviral activity of recombinant natural killer cell enhancing factors, NKEF-A and NKEF-B, members of the peroxiredoxin family. J Biol Chem 278:1569–1574. doi:10.1074/jbc.M209964200

    Article  PubMed  CAS  Google Scholar 

  19. Logan MR, Odemuyiwa SO, Moqbel R (2003) Understanding exocytosis in immune and inflammatory cells: the molecular basis of mediator secretion. J Allergy Clin Immunol 5:923–932. doi:10.1067/mai.2003.1573

    Google Scholar 

  20. Jordens I, Marsman M, Kuijl C, Neefjes J (2005) Rab proteins, connecting transport and vesicle fusion. Traffic 6:1070–1077. doi:10.1111/j.1600-0854.2005.00336

    Article  PubMed  CAS  Google Scholar 

  21. Qin H, Ishiwata T, Wang R, Kudo M, Yokoyama M, Naito Z, Asano G (2000) Effects of extracellular matrix on phenotype modulation and MAPK transduction of rat aortic smooth muscle cells in vitro. Exp Mol Pathol 69:79–90. doi:10.1006/exmp.2000.2321

    Article  PubMed  CAS  Google Scholar 

  22. Jurcevic S, Ainsworth ME, Pomerance A, Smith JD, Robinson DR, Dunn MJ, Yacoub MH, Rose ML (2001) Antivimentin antibodies are an independent predictor of transplant-associated coronary artery disease after cardiac transplantation. Transplantation 7:886–892

    Article  Google Scholar 

  23. Kang JH, Kim H, Choi MS, Lee WH, Huh TL, Park YB, Moon BJ, Kwon OS (2006) Proteome analysis of human monocytic THP-1 cells primed with oxidized low-density lipoproteins. Proteomics 6:1261–1273. doi:10.1002/pmic.200500290

    Article  PubMed  CAS  Google Scholar 

  24. Heidenthal AK, Weber PC, Lottspeich F, Hrboticky N (2000) The binding in vitro of modified LDL to the intermediate filament protein vimentin. Biochem Biophys Res Commun 267:49–53. doi:10.1006/bbrc.1999.1940

    Article  PubMed  CAS  Google Scholar 

  25. Keller TT, van Leuven SI, Meuwese MC, Wareham NJ, Luben R, Stroes ES, Hack CE, Levi M, Khaw KT, Boekholdt SM (2006) Serum levels of mannose-binding lectin and the risk of future coronary artery disease in apparently healthy men and women. Arterioscler Thromb Vasc Biol 10:2345–2350. doi:10.1161/01.ATV.0000240517.69201.77

    Article  Google Scholar 

  26. Gadjeva M, Takahashi K, Thiel S (2004) Mannan-binding lectin–a soluble pattern recognition molecule. Mol Immunol 41:113–121. doi:10.1016/j.molimm.2004.03.015

    Article  PubMed  CAS  Google Scholar 

  27. Turner MW (1996) Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol Today 17:532–540

    Article  PubMed  CAS  Google Scholar 

  28. Petersen SV, Thiel S, Jensenius JC (2001) The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol 38:133–149. doi:10.1016/S0161-5890(01)00038-4

    Article  PubMed  CAS  Google Scholar 

  29. Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR (2001) Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 5:2861–2868

    Google Scholar 

  30. Ogden CA, de Cathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194:781–795. doi:10.1084/jem.194.6.781

    Article  PubMed  CAS  Google Scholar 

  31. Ghiran I, Barbashov SF, Klickstein LB, Tas SW, Jensenius JC, Nicholson-Weller A (2000) Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med 192:1797–1808. doi:10.1084/jem.192.12.1797

    Article  PubMed  CAS  Google Scholar 

  32. Speidl WS, Exner M, Amighi J, Kastl SP, Zorn G, Maurer G, Wagner O, Huber K, Minar E, Wojta J, Schillinger M (2005) Complement component C5a predicts future cardiovascular events in patients with advanced atherosclerosis. Eur Heart J 26:2294–2299. doi:10.1093/eurheartj/ehi339

    Article  PubMed  CAS  Google Scholar 

  33. Oksjoki R, Jarva H, Kovanen PT, Laine P, Meri S, Pentikainen MO (2003) Association between complement factor H and proteoglycans in early human coronary atherosclerotic lesions: implications for local regulation of complement activation. Arterioscler Thromb Vasc Biol 23:630–636. doi:10.1161/01.ATV.0000057808.91263.A4

    Article  PubMed  CAS  Google Scholar 

  34. Zhu J, Quyumi AA, Wu H, Csako G, Rott D, Zalles-Ganley A, Ogunmakinwa J, Halcox J, Epstein SE (2003) Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 23:1055–1059. doi:10.1161/01.ATV.0000074899.60898.FD

    Article  PubMed  CAS  Google Scholar 

  35. Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103:571–577. doi:10.1172/JCI5310

    Article  PubMed  CAS  Google Scholar 

  36. Shamaei-Tousi A, Stephens JW, Bin R, Cooper JA, Steptoe A, Coates ARM, Henderson B, Humphries SE (2006) Association between plasma levels of heat shock protein 60 and cardiovascular disease in patients with diabetes mellitus. Eur Heart J 27:1565–1570. doi:10.1093/eurheartj/ehl081

    Article  PubMed  CAS  Google Scholar 

  37. Kanwar RK, Kanwar JR, Wang D, Ormrod DJ, Krissansen GW (2001) Temporal expression of heat shock proteins 60 and 70 at lesion-prone sites during atherogenesis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 12:1991–1997. doi:10.1161/hq1201.100263

    Article  Google Scholar 

  38. Han Z, Truong QA, Park S, Breslow JL (2003) Two Hsp70 family members expressed in atherosclerotic lesions. Proc Natl Acad Sci USA 3:1256–1261. doi:10.1073/pnas.252764399

    Article  Google Scholar 

  39. Svensson PA, Asea A, Englund MC, Bausero MA, Jernås M, Wiklund O, Ohlsson BG, Carlsson LM, Carlsson B (2006) Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages. Atherosclerosis 185:32–38. doi:10.1016/j.atherosclerosis.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  40. Westaby S, Johnson P, Parry AJ, Blomquist S, Solen JO, Alling C, Pillai R, Taggart DP, Grebenik C (1996) Serum S100 protein: a potential marker for cerebral events during cardiopulmonary bypass. Ann Thorac Surg 61:88–92. doi:10.1016/0003-4975(95)00904-3

    Article  PubMed  CAS  Google Scholar 

  41. Ramasamy R, Yan SF, Schmidt AM (2005) The RAGE axis and endothelial dysfunction: maladaptive roles in the diabetic vasculature and beyond. Trends Cardiovasc Med 15:237–243. doi:10.1016/j.tcm.2005.08.003

    Article  PubMed  CAS  Google Scholar 

  42. Rammes A, Roth J, Goebeler M, Kelmpt M, Sorg C (1997) Myeloid related protein (MRP8) and MRP-14, calcium binding proteins of the S100 family are secreted by activated monocytes via novel tubulin-dependent pathway. J Biol Chem 272:9496–9502. doi:10.1074/jbc.272.14.9496

    Article  PubMed  CAS  Google Scholar 

  43. McCormick MM, Rahimi F, Bobryshev YV, Gaus K, Zreiqat H, Cai H, Lord RSA, Geczy CL (2005) S100A8 and S100A9 in human arterial wall. Implications for atherogenesis. J Biol Chem 280:41521–41529. doi:10.1074/jbc.M509442200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research project was funded by the Department of Biotechnology (DBT), New Delhi, India (DBT ref. no. BT/PR8001/MED/12/306/2006).

Conflict of interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Khullar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poduri, A., Bahl, A., Talwar, K.K. et al. Proteomic analysis of circulating human monocytes in coronary artery disease. Mol Cell Biochem 360, 181–188 (2012). https://doi.org/10.1007/s11010-011-1055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1055-3

Keywords

Navigation