Skip to main content
Log in

Molecular and functional characterization of glycogen synthase in the porcine satellite cells under insulin treatment

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Glycogen synthase (GS) catalyzes the key step of glycogen synthesis and plays an important role in glycogen metabolism in liver and muscle. In this study, we cloned the cDNA and promoter sequences of porcine glycogen synthesis genes (GYS1 and GYS2). Expression analysis revealed that porcine GYS1 was highly expressed in the skeletal muscle and heart. GYS2 was expressed specifically in liver and subcutaneous adipose tissue. The expression level of GYS1 was up-regulated from proliferation to differentiation in the porcine satellite cells, and insulin did not significantly affect the transcription of GYS1. Insulin stimulated 72-h-differentiated satellite cells as indicated by decrease in phosphorylation of GS, but did not affect GYS1 transcription and total GS protein level, suggesting that the effect of insulin is primarily mediated via posttranscriptional control rather than regulated at the transcriptional level. Four single-nucleotide polymorphisms (SNPs) were detected in the promoter and cDNA sequences of porcine GYS1. Association analyses revealed that the GYS1 Hin6I and MvaI polymorphisms both had significant associations (P < 0.05) with pH of M. longissimus dorsi (pHLD), M. biceps femoris (pHBF) and M. semipinalis capitis (pHSC) at 45 min postmortem. These results provide useful information for further investigation on the function of glycogen synthase in porcine skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaslow HR, Lesikar DD, Antwi D, Tan AW (1985) L-type glycogen synthase. Tissue distribution and electrophoretic mobility. J Biol Chem 260:9953–9956

    PubMed  CAS  Google Scholar 

  2. Bai G, Zhang ZJ, Werner R, Nuttall FQ, Tan AW, Lee EY (1990) The primary structure of rat liver glycogen synthase deduced by cdna cloning. Absence of phosphorylation sites 1a and 1b. J Biol Chem 265:7843–7848

    PubMed  CAS  Google Scholar 

  3. Kaslow HR, Lesikar DD (1984) Isozymes of glycogen synthase. FEBS Lett 172:294–298

    Article  PubMed  CAS  Google Scholar 

  4. Browner MF, Nakano K, Bang AG, Fletterick RJ (1989) Human muscle glycogen synthase cDNA sequence: a negatively charged protein with an asymmetric charge distribution. Proc Natl Acad Sci USA 86:1443–1447

    Article  PubMed  CAS  Google Scholar 

  5. Manchester J, Skurat AV, Roach P, Hauschka SD, Lawrence JC (1996) Increased glycogen accumulation in transgenic mice overexpressing glycogen synthase in skeletal muscle. Proc Natl Acad Sci USA 93:10707–10711

    Article  PubMed  CAS  Google Scholar 

  6. Pederson BA, Chen HY, Schroeder JM, Shou WN, DePaoli-Roach AA, Roach PJ (2004) Abnormal cardiac development in the absence of heart glycogen. Mol Cell Biol 24:7179–7187

    Article  PubMed  CAS  Google Scholar 

  7. Pederson BA, Schroeder JM, Parker GE, Smith MW, DePaoli-Roach AA, Roach PJ (2005) Glucose metabolism in mice lacking muscle glycogen synthase. Diabetes 54:3466–3473

    Article  PubMed  CAS  Google Scholar 

  8. Larzul C, Lefaucheur L, Ecolan P, Gogue J, Talmant A, Sellier P, LeRoy P, Monin G (1997) Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in large white pigs. J Anim Sci 75:3126–3137

    PubMed  CAS  Google Scholar 

  9. Ryu YC, Kim BC (2005) The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci 71:351–357

    Article  PubMed  CAS  Google Scholar 

  10. Fernandez-Figares I, Shannon AE, Wray-Cahen D, Caperna TJ (2004) The role of insulin, glucagon, dexamethasone, and leptin in the regulation of ketogenesis and glycogen storage in primary cultures of porcine hepatocytes prepared from 60 kg pigs. Domest Anim Endocrinol 27:125–140

    Article  PubMed  CAS  Google Scholar 

  11. Roach PJ, Cheng C, Huang D, Lin A, Mu J, Skurat AV, Wilson W, Zhai L (1998) Novel aspects of the regulation of glycogen storage. J Basic Clin Physiol Pharmacol 9:139–151

    Article  PubMed  CAS  Google Scholar 

  12. Gomis RR, Ferrer JC, Guinovart JJ (2000) Shared control of hepatic glycogen synthesis by glycogen synthase and glucokinase. Biochem J 351:811–816

    Article  PubMed  CAS  Google Scholar 

  13. Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2:769–776

    Article  PubMed  CAS  Google Scholar 

  14. Hanashiro I, Roach PJ (2002) Mutations of muscle glycogen synthase that disable activation by glucose 6-phosphate. Arch Biochem Biophys 397:286–292

    Article  PubMed  CAS  Google Scholar 

  15. Mccue ME, Valberg SJ, Miller MB, Wade C, DiMauro S, Akman HO, Mickelson JR (2008) Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics 91:458–466

    Article  PubMed  CAS  Google Scholar 

  16. Zuo B, Xiong YZ, Deng CY, Su YH, Wang J, Lei MG, Li FE, Jiang SW, Zheng R (2005) Polymorphism, linkage mapping and expression pattern of the porcine skeletal muscle glycogen synthase (GYS1) gene. Anim Genet 36:254–257

    Article  PubMed  CAS  Google Scholar 

  17. Zuo B, Yang H, Lei MG, Li FE, Deng CY, Jiang SW, Xiong YZ (2007) Association of the polymorphism in GYS1 and ACOX1 genes with meat quality traits in pigs. Animal 1:1243–1248

    Article  CAS  Google Scholar 

  18. Fontanesi L, Davoli R, Nanni Costa L, Scotti E, Russo V (2003) Study of candidate genes for glycolytic potential of porcine skeletal muscle: identification and analysis of mutations, linkage and physical mapping and association with meat quality traits in pigs. Cytogenet Genome Res 102:145–151

    Article  PubMed  CAS  Google Scholar 

  19. de Koning DJ, Janss LL, Rattink AP, van Oers PA, de Vries BJ, Groenen MA, van der Poel JJ, de Groot PN, Brascamp EW, van Arendonk JA (1999) Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (sus scrofa). Genetics 152:1679–1690

    PubMed  Google Scholar 

  20. Clop A, Ovilo C, Perez-Enciso M, Cercos A, Tomas A, Fernandez A, Coll A, Folch JM, Barragan C, Diaz I, Oliver MA, Varona L, Silio L, Sanchez A, Noguera JL (2003) Detection of QTL affecting fatty acid composition in the pig. Mamm Genome 14:650–656

    Article  PubMed  Google Scholar 

  21. Wang L, Lei M, Zuo B, Xu D, Ren Z, Xiong Y (2010) Multiple alternative splicing and differential expression of actinin-associated LIM protein (ALP) during porcine skeletal muscle development in vitro and in vivo. Meat Sci 84:655–661

    Article  PubMed  CAS  Google Scholar 

  22. Ortenblad N, Young JF, Oksbjerg N, Nielsen JH, Lambert IH (2003) Reactive oxygen species are important mediators of taurine release from skeletal muscle cells. Am J Physiol Cell Physiol 284:C1362–C1373

    PubMed  CAS  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  24. Thomas JA, Schlender KK, Larner J (1968) A rapid filter paper assay for udpglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem 25:486–499

    Article  PubMed  CAS  Google Scholar 

  25. Xiong YZ, Deng CY (1999) Principle and method of Swine Testing. Chinese Agricultural Press, Beijing

    Google Scholar 

  26. Liu BH (1998) Statistical genomics: linkage, mapping, and QTL analysis. CRC Press, New York

    Google Scholar 

  27. Skurat AV, Roach PJ (1995) Phosphorylation of sites 3a and 3b (Ser640 and Ser644) in the control of rabbit muscle glycogen synthase. J Biol Chem 270:12491–12497

    Article  PubMed  CAS  Google Scholar 

  28. Skurat AV, Roach PJ (1996) Multiple mechanisms for the phosphorylation of c-terminal regulatory sites in rabbit muscle glycogen synthase expressed in cos cells. Biochem J 313:45–50

    PubMed  CAS  Google Scholar 

  29. Ros S, Garcia-Rocha M, Dominguez J, Ferrer JC, Guinovart JJ (2009) Control of liver glycogen synthase activity and intracellular distribution by phosphorylation. J Biol Chem 284:6370–6378

    Article  PubMed  CAS  Google Scholar 

  30. Mandard S, Stienstra R, Escher P, Tan NS, Kim I, Gonzalez FJ, Wahli W, Desvergne B, Muller M, Kersten S (2007) Glycogen synthase 2 is a novel target gene of peroxisome proliferator-activated receptors. Cell Mol Life Sci 64:1145–1157

    Article  PubMed  CAS  Google Scholar 

  31. Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD (2005) An initial blueprint for myogenic differentiation. Genes Dev 19:553–569

    Article  PubMed  CAS  Google Scholar 

  32. Liu J, Brautigan DL (2000) Glycogen synthase association with the striated muscle glycogen-targeting subunit of protein phosphatase-1. Synthase activation involves scaffolding regulated by beta-adrenergic signaling. J Biol Chem 275:26074–26081

    Article  PubMed  CAS  Google Scholar 

  33. Flotow H, Roach PJ (1989) Synergistic phosphorylation of rabbit muscle glycogen synthase by cyclic amp-dependent protein kinase and casein kinase I. Implications for hormonal regulation of glycogen synthase. J Biol Chem 264:9126–9128

    PubMed  CAS  Google Scholar 

  34. Orena SJ, Torchia AJ, Garofalo RS (2000) Inhibition of glycogen-synthase kinase 3 stimulates glycogen synthase and glucose transport by distinct mechanisms in 3T3–L1 adipocytes. J Biol Chem 275:15765–15772

    Article  PubMed  CAS  Google Scholar 

  35. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/AKT/mTOR and PI(3)K/AKT/GSK3 pathways. Nat Cell Biol 3:1009–1013

    Article  PubMed  CAS  Google Scholar 

  36. MacAulay K, Blair AS, Hajduch E, Terashima T, Baba O, Sutherland C, Hundal HS (2005) Constitutive activation of GSK3 down-regulates glycogen synthase abundance and glycogen deposition in rat skeletal muscle cells. J Biol Chem 280:9509–9518

    Article  PubMed  CAS  Google Scholar 

  37. Fernandez X, Tornberg E (1991) A review of the causes of variation in muscle glycogen content and ultimate pH in pigs. J Muscle Foods 2:209–235

    Article  Google Scholar 

  38. Malek M, Dekkers JC, Lee HK, Baas TJ, Prusa K, Huff-Lonergan E, Rothschild MF (2001) A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm Genome 12:637–645

    Article  PubMed  CAS  Google Scholar 

  39. Immonen K, Puolanne E (2000) Variation in residual glycogen–glucose concentration at ultimate pH values below 5.75. Meat Sci 55:279–283

    Article  PubMed  CAS  Google Scholar 

  40. Kylä-Puhju M, Ruusunen M, Puolanne E (2005) Activity of porcine muscle glycogen debranching enzyme in relation to pH and temperature. Meat Sci 69:143–149

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from National Natural Science Foundation of China (31101699), the Key Project of National Basic Research and Developmental Plan (2006CB102102) of China, and National High Technology Research and Development Program (2006AA10Z1D6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzhu Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Xiong, Y., Zuo, B. et al. Molecular and functional characterization of glycogen synthase in the porcine satellite cells under insulin treatment. Mol Cell Biochem 360, 169–180 (2012). https://doi.org/10.1007/s11010-011-1054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1054-4

Keywords

Navigation