Skip to main content

Advertisement

Log in

Association of the testis-specific TRIM/RBCC protein RNF33/TRIM60 with the cytoplasmic motor proteins KIF3A and KIF3B

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The Rnf33/Trim60 gene is temporally transcribed in the preimplantation embryo before being silenced at the blastocyst stage but Rnf33 expression is detected in adult testis of the mouse. The putative RNF33 protein is a tripartite motif (TRIM)/RBCC protein composed of a typical RING zinc finger, a B-box 2, two α-helical coiled-coil segments, and a B30.2 domain. As a first step towards the elucidation of the biologic function of RNF33, we aimed in this study to elucidate proteins that associate with RNF33. RNF33-interacting proteins were first derived by the yeast two-hybrid system followed by co-immunoprecipitation assays. Interacting domains were determined by deletion mapping in genetic and biochemical analyzes. RNF33 was shown to interact with the kinesin-2 family members 3A (KIF3A) and 3B (KIF3B) motor proteins in the heterodimeric form known to transport cargos along the microtubule. Domain mapping showed that the RB and B30.2 domains of RNF33 interacted with the respective carboxyl non-motor domains of KIF3A and KIF3B. Since RNF33 interacted with the carboxyl-terminal tail of the KIF3A–KIF3B heterodimer, the motor head section of KIF3A–KIF3B was free and available for association with designated cargo(s) and movement along the microtubule. Data also suggest that RNF33 most likely interacted with KIF3A–KIF3B independent of the adaptor kinesin-associated protein KAP3. This study is a first demonstration of a TRIM protein, namely RNF33, that interacts with the kinesin molecular motors possibly contributing to kinesin-dependent mobilization of specific cargo(s) along the microtubule in the testis of the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3-AT:

3-amino-triazole

APC:

Adenomatous polyposis coli

COS:

C-terminal subgroup one signature

DTT:

Dithiothreitol

KAP3:

Kinesin superfamily-associated protein 3

KIF3A/KIF3B:

Kinesin-2 family members 3A and 3B

MIS:

Mullerian inhibiting substance

NF-κB:

Nuclear factor-κB

RBCC:

RING-Box-coiled-coil

RFP:

Ret finger protein

RING:

Really interesting new gene, RNF, RING finger protein

SPRY:

SplA and ryanodine receptor

TNFα:

Tumor necrosis factor α

TRIM:

Tripartitate motif

References

  1. Choo KB, Chen HH, Cheng WT, Chang HS, Wang M (2001) In silico mining of EST databases for novel pre-implantation embryo-specific zinc finger protein genes. Mol Reprod Dev 59:249–255

    Article  PubMed  CAS  Google Scholar 

  2. Short KM, Cox TC (2006) Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J Biol Chem 281:8970–8980

    Article  PubMed  CAS  Google Scholar 

  3. Choo KB, Chen HH, Liu TY, Chang CP (2002) Different modes of regulation of transcription and pre-mRNA processing of the structurally juxtaposed homologs, Rnf33 and Rnf35, in eggs and in pre-implantation embryos. Nucleic Acids Res 30:4836–4844

    Article  PubMed  CAS  Google Scholar 

  4. Sharov AA, Piao Y, Matoba R, Dudekula DB, Qian Y, VanBuren V et al (2003) Transcriptome analysis of mouse stem cells and early embryos. PLoS Biol 1:E74

    Article  PubMed  Google Scholar 

  5. Choo KB, Hsu MC, Tsai YH, Lin WY, Huang CJ (2011) Nuclear factor kappa B and tumor necrosis factor-alpha modulation of transcription of the mouse testis- and pre-implantation development-specific Rnf33/Trim60 gene. FEBS J 278:837–850

    Article  PubMed  CAS  Google Scholar 

  6. Chen HH, Liu TY, Li H, Choo KB (2002) Use of a common promoter by two juxtaposed and intronless mouse early embryonic genes, Rnf33 and Rnf35: implications in zygotic gene expression. Genomics 80:140–143

    Article  PubMed  CAS  Google Scholar 

  7. Maresca TJ, Niederstrasser H, Weis K, Heald R (2005) Xnf7 contributes to spindle integrity through its microtubule-bundling activity. Curr Biol 15:1755–1761

    Article  PubMed  CAS  Google Scholar 

  8. Stremlau M, Perron M, Welikala S, Sodroski J (2005) Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J Virol 79:3139–3145

    Article  PubMed  CAS  Google Scholar 

  9. Yap MW, Nisole S, Stoye JP (2005) A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 15:73–78

    Article  PubMed  CAS  Google Scholar 

  10. Woo JS, Suh HY, Park SY, Oh BH (2006) Structural basis for protein recognition by B30.2/SPRY domains. Mol Cell 24:967–976

    Article  PubMed  CAS  Google Scholar 

  11. Rhodes DA, de Bono B, Trowsdale J (2005) Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune defence? Immunology 116:411–417

    PubMed  CAS  Google Scholar 

  12. Meroni G, Diez-Roux G (2005) TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays 27:1147–1157

    Article  PubMed  CAS  Google Scholar 

  13. Huang CJ, Chen CY, Chen HH, Tsai SF, Choo KB (2004) TDPOZ, a family of bipartite animal and plant proteins that contain the TRAF (TD) and POZ/BTB domains. Gene 324:117–127

    Article  PubMed  CAS  Google Scholar 

  14. Frederick MA, Kingston E, Moor DD, Seidman JG, Smith JA, Struhl K (1994) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  15. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L et al (2001) The tripartite motif family identifies cell compartments. EMBO J 20:2140–2151

    Article  PubMed  CAS  Google Scholar 

  16. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA et al (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22

    Article  PubMed  CAS  Google Scholar 

  17. Yamazaki H, Nakata T, Okada Y, Hirokawa N (1995) KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J Cell Biol 130:1387–1399

    Article  PubMed  CAS  Google Scholar 

  18. Yamazaki H, Nakata T, Okada Y, Hirokawa N (1996) Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc Natl Acad Sci USA 93:8443–8448

    Article  PubMed  CAS  Google Scholar 

  19. Kondo S, Sato-Yoshitake R, Noda Y, Aizawa H, Nakata T, Matsuura Y, Hirokawa N (1994) KIF3A is a new microtubule-based anterograde motor in the nerve axon. J Cell Biol 125:1095–1107

    Article  PubMed  CAS  Google Scholar 

  20. Hong CY, Park JH, Ahn RS, Im SY, Choi HS, Soh J, Mellon SH, Lee K (2004) Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol 24:2593–2604

    Article  PubMed  CAS  Google Scholar 

  21. Hong CY, Park JH, Seo KH, Kim JM, Im SY, Lee JW, Choi HS, Lee K (2003) Expression of MIS in the testis is downregulated by tumor necrosis factor alpha through the negative regulation of SF-1 transactivation by NF-kappa B. Mol Cell Biol 23:6000–6012

    Article  PubMed  CAS  Google Scholar 

  22. Fujino RS, Tanaka K, Morimatsu M, Tamura K, Kogo H, Hara T (2006) Spermatogonial cell-mediated activation of an IkappaBzeta-independent nuclear factor-kappaB pathway in Sertoli cells induces transcription of the lipocalin-2 gene. Mol Endocrinol 20:904–915

    Article  PubMed  CAS  Google Scholar 

  23. Mizuno K, Hayashi Y, Kojima Y, Nakane A, Tozawa K, Kohri K (2009) Activation of NF-kappaB associated with germ cell apoptosis in testes of experimentally induced cryptorchid rat model. Urology 73:389–393

    Article  PubMed  Google Scholar 

  24. Scholey JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19:423–443

    Article  PubMed  CAS  Google Scholar 

  25. Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka S, Hirokawa N (1999) Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis. J Cell Biol 145:825–836

    Article  PubMed  CAS  Google Scholar 

  26. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837

    Article  PubMed  CAS  Google Scholar 

  27. Nishimura T, Kato K, Yamaguchi T, Fukata Y, Ohno S, Kaibuchi K (2004) Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat Cell Biol 6:328–334

    Article  PubMed  CAS  Google Scholar 

  28. Teng J, Rai T, Tanaka Y, Takei Y, Nakata T, Hirasawa M, Kulkarni AB, Hirokawa N (2005) The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nat Cell Biol 7:474–482

    Article  PubMed  CAS  Google Scholar 

  29. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  PubMed  CAS  Google Scholar 

  30. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214

    Article  PubMed  CAS  Google Scholar 

  31. Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:467–476

    Article  PubMed  CAS  Google Scholar 

  32. Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88:1089–1118

    Article  PubMed  CAS  Google Scholar 

  33. Haraguchi K, Hayashi T, Jimbo T, Yamamoto T, Akiyama T (2006) Role of the kinesin-2 family protein, KIF3, during mitosis. J Biol Chem 281:4094–4099

    Article  PubMed  CAS  Google Scholar 

  34. Takeda S, Yamazaki H, Seog DH, Kanai Y, Terada S, Hirokawa N (2000) Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J Cell Biol 148:1255–1265

    Article  PubMed  CAS  Google Scholar 

  35. Jimbo T, Kawasaki Y, Koyama R, Sato R, Takada S, Haraguchi K, Akiyama T (2002) Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat Cell Biol 4:323–327

    Article  PubMed  CAS  Google Scholar 

  36. Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H et al (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci USA 103:5514–5519

    Article  PubMed  CAS  Google Scholar 

  37. Javanbakht H, Diaz-Griffero F, Stremlau M, Si Z, Sodroski J (2005) The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5alpha. J Biol Chem 280:26933–26940

    Article  PubMed  CAS  Google Scholar 

  38. Li X, Song B, Xiang SH, Sodroski J (2007) Functional interplay between the B-box 2 and the B30.2(SPRY) domains of TRIM5alpha. Virology 366:234–244

    Article  PubMed  CAS  Google Scholar 

  39. Beenders B, Jones PL, Bellini M (2007) The tripartite motif of nuclear factor 7 is required for its association with transcriptional units. Mol Cell Biol 27:2615–2624

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Yu-Chan Chao, Academia Sinica, Taipei, for the baculovirus transfer plasmid and Dr. William O. Hancock, Pennsylvania State University, Pennsylvania for the KIF3A and KIF3B expression plasmids. The authors are also grateful to Min-Chuan Hsu, Wan-Yi Lin, and Yao-Hui Tsai for technical assistance, and Professor Kong-Bung Choo for discussion and editing of the manuscript. This study was supported by the National Science Council (Taiwan) grant NSC-100-2313-B-034-001 to CJH. CCH was supported by the National Science Council (Taiwan) postdoctoral fellowship NSC094-2811-B-075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-Jung Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CJ., Huang, CC. & Chang, CC. Association of the testis-specific TRIM/RBCC protein RNF33/TRIM60 with the cytoplasmic motor proteins KIF3A and KIF3B. Mol Cell Biochem 360, 121–131 (2012). https://doi.org/10.1007/s11010-011-1050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1050-8

Keywords

Navigation