Skip to main content
Log in

Redox state-dependent aggregation of mitochondria induced by cytochrome c

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cytochrome c is known to play central role in apoptosis. Here, it is shown that ferricytochrome c, but not ferrocytochrome c is able to directly induce the aggregation of rat liver mitochondria, similar to the effect caused by magnesium ions at high concentrations. The aggregation was revealed by a decrease in light dispersion of mitochondrial suspension and it was confirmed by the optical microscopy. In the medium containing NADH and cytochrome c, mitochondrial aggregation was initiated only after exhaustion of NADH leading to oxidation of cytochrome c. The aggregation induced by 30 μM ferricytochrome c, but not by 5 mM MgCl2, was completely inhibited by 30–100 μM ferricyanide, thus indicating that ferricyanide-cytochrome c specific interaction prevents mitochondrial aggregation. After completion of the aggregation caused by ferricytochrome c, this effect cannot be readily reversed by subsequent reduction of cytochrome c. The aggregation induced by ferricytochrome c and/or magnesium ions explains masking of the external NADH-oxidase activity of mitochondria in vitro reported in the literature. This new cytochrome c redox state-dependent phenomenon might also be involved in more complex mechanisms controlling aggregation (clustering) of mitochondria in vivo under the influence of pro-apoptotic factors and requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cortese JD, Voglino AL, Hackenbrock CR (1995) Persistence of cytochrome c binding to membranes at physiological mitochondrial intermembrane space ionic strength. Biochim Biophys Acta 1228:216–228

    Article  PubMed  Google Scholar 

  2. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  3. Pan Z, Voehringer DW, Meyn RE (1999) Analysis of redox regulation of cytochrome c-induced apoptosis in a cell-free system. Cell Death Differ 6:683–688

    Article  PubMed  CAS  Google Scholar 

  4. Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G (1996) Mitochondria and programmed cell death: back to the future. FEBS Lett 396:7–13

    Article  PubMed  CAS  Google Scholar 

  5. Orrenius S (2004) Mitochondrial regulation of apoptotic cell death. Toxicol Lett 149:19–23

    Article  PubMed  CAS  Google Scholar 

  6. Aslan JE, Thomas G (2009) Death by committee: organellar trafficking and communication in apoptosis. Traffic 10:1390–1404

    Article  PubMed  CAS  Google Scholar 

  7. Thomas WD, Zhang XD, Franco AV, Nguyen T, Hersey P (2000) TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria. J Immunol 165:5612–5620

    PubMed  CAS  Google Scholar 

  8. Sangchot P, Sharma S, Chetsawang B, Porter J, Govitrapong P, Ebadi M (2002) Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation and alpha-synuclein translocation in SK-N-SH cells in culture. Dev Neurosci 24:143–153

    Article  PubMed  CAS  Google Scholar 

  9. Aokage T, Ohsawa I, Ohta S (2004) Green fluorescent protein causes mitochondria to aggregate in the presence of the Bcl-2 family proteins. Biochem Biophys Res Commun 314:711–716

    Article  PubMed  CAS  Google Scholar 

  10. Liu L, Vo A, Liu G, McKeehan WL (2005) Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction. Cancer Res 65:4191–4201

    Article  PubMed  CAS  Google Scholar 

  11. Haga N, Fujita N, Tsuruo T (2005) Involvement of mitochondrial aggregation in arsenic trioxide (As2O3)-induced apoptosis in human glioblastoma cells. Cancer Sci 96:825–833

    Article  PubMed  CAS  Google Scholar 

  12. Moss TN, Vo A, Mckeehan WL, Liu L (2007) UXT (ubiquitously expressed transcript) causes mitochondrial aggregation. In Vitro Cell Dev Biol Anim 43:139–146

    Article  PubMed  CAS  Google Scholar 

  13. Liu L, Xie R, Yang C, McKeehan WL (2009) Dual function microtubule- and mitochondria-associated proteins mediate mitotic cell death. Cell Oncol 31:393–405

    PubMed  Google Scholar 

  14. Gamble JL Jr (1957) Aggregation of mitochondria, mitochondrial fragments, and microsomes by cytochrome c. Biochim Biophys Acta 23:306–311

    Article  PubMed  CAS  Google Scholar 

  15. Matlib MA, O’Brien PJ (1976) Properties of rat liver mitochondria with intermembrane cytochrome c. Arch Biochem Biophys 173:27–33

    Article  PubMed  CAS  Google Scholar 

  16. Lemeshko VV (2002) Cytochrome c sorption–desorption effects on the external NADH oxidation by mitochondria: experimental and computational study. J Biol Chem 277:17751–17757

    Article  PubMed  CAS  Google Scholar 

  17. Lemeshko VV (2000) Mg(2+) induces intermembrane electron transport by cytochrome c desorption in mitochondria with the ruptured outer membrane. FEBS Lett 472:5–8

    Article  PubMed  CAS  Google Scholar 

  18. Lemeshko VV, Solano S, Lopez LF, Rendón DA, Ghafourifar P, Gomez LA (2003) Dextran causes aggregation of mitochondria and influences their oxidoreductase activities and light scattering. Arch Biochem Biophys 412:176–185

    Article  PubMed  CAS  Google Scholar 

  19. Lemeshko VV, Lopez LF, Solano S, Torres R (2003) The natural antioxidant otobaphenol delays the permeability transition of mitochondria and induces their aggregation. Antioxid Redox Signal 5:281–290

    Article  PubMed  CAS  Google Scholar 

  20. Lemeshko VV (2010) Potential-dependent membrane permeabilization and mitochondrial aggregation caused by anticancer polyarginine-KLA peptides. Arch Biochem Biophys 493:213–220

    Article  PubMed  CAS  Google Scholar 

  21. Lemeshko VV (2006) Cytochrome c-induced redox state-dependent aggregation of rat liver mitochondria. 2006 Biophysical society meeting. Biophysical journal, Supplement, Abstract. (www.biophysics.org/Meetings/AnnualMeeting/AbstractIssues/tabid/461/Default.aspx) (2124-Poster, Session title: Electron Transfer Systems)

  22. Lemeshko VV, Kugler W (2007) Synergistic inhibition of mitochondrial respiration by anticancer agent erucylphosphohomocholine and cyclosporin A. J Biol Chem 282:37303–37307

    Article  PubMed  CAS  Google Scholar 

  23. La Piana G, Gorgoglione V, Laraspata D, Marzulli D, Lofrumento NE (2008) Effect of magnesium ions on the activity of the cytosolic NADH/cytochrome c electron transport system. FEBS J 275:6168–6179

    Article  PubMed  Google Scholar 

  24. Hampton MB, Zhivotovsky B, Slater AF, Burgess DH, Orrenius S (1998) Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts. Biochem J 329:95–99

    PubMed  CAS  Google Scholar 

  25. Hancock JT, Desikan R, Neill SJ (2001) Does the redox status of cytochrome c act as a fail-safe mechanism in the regulation of programmed cell death? Free Radic Biol Med 31:697–703

    Article  PubMed  CAS  Google Scholar 

  26. Jiang S, Moriarty-Craige SE, Orr M, Cai J, Sternberg P, Jones DP (2005) Oxidant-induced apoptosis in human retinal pigment epithelial cells: dependence on extracellular redox state. Investig Ophthalmol Vis Sci 46:1054–1061

    Article  Google Scholar 

  27. Suto D, Sato K, Ohba Y, Yoshimura T, Fujii J (2005) Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism. Biochem J 392:399–406

    Article  PubMed  CAS  Google Scholar 

  28. Borutaite V, Brown GC (2007) Mitochondrial regulation of caspase activation by cytochrome oxidase and tetramethylphenylenediamine via cytosolic cytochrome c redox state. J Biol Chem 282:31124–31130

    Article  PubMed  CAS  Google Scholar 

  29. Brown GC, Borutaite V (2008) Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta 1777:877–881

    Article  PubMed  CAS  Google Scholar 

  30. Ripple MO, Abajian M, Springett R (2010) Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization. Apoptosis 15:563–573

    Article  PubMed  CAS  Google Scholar 

  31. Chinnaiyan AM (1999) The apoptosome: heart and soul of the cell death machine. Neoplasia 1:5–15

    Article  PubMed  CAS  Google Scholar 

  32. Purring-Koch C, McLendon G (2000) Cytochrome c binding to Apaf-1: the effects of dATP and ionic strength. Proc Natl Acad Sci USA 97:11928–11931

    Article  PubMed  CAS  Google Scholar 

  33. Atamna H, Nguyen A, Schultz C, Boyle K, Newberry J, Kato H, Ames BN (2008) Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. FASEB J 22:703–712

    Article  PubMed  CAS  Google Scholar 

  34. Everse J, Kujundzic N (1979) Kinetics and mechanism of the reduction of horse heart ferricytochrome c by glutathione. Biochemistry 18:2668–2673

    Article  PubMed  CAS  Google Scholar 

  35. Al-Ayash AI, Wilson MT (1979) The mechanism of reduction of single-site redox proteins by ascorbic acid. Biochem J 177:641–648

    PubMed  CAS  Google Scholar 

  36. La Penna G, Furlan S, Banci L (2007) Molecular statistics of cytochrome c: structural plasticity and molecular environment. J Biol Inorg Chem 12:180–193

    Article  PubMed  Google Scholar 

  37. Rytömaa M, Kinnunen PK (1995) Reversibility of the binding of cytochrome c to liposomes. Implications for lipid–protein interactions. J Biol Chem 270:3197–3202

    Article  PubMed  Google Scholar 

  38. Hagarman A, Duitch L, Schweitzer-Stenner R (2008) The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy. Biochemistry 47:9667–9677

    Article  PubMed  CAS  Google Scholar 

  39. Kawai C, Prado FM, Nunes GL, Di Mascio P, Carmona-Ribeiro AM, Nantes IL (2005) pH-Dependent interaction of cytochrome c with mitochondrial mimetic membranes: the role of an array of positively charged amino acids. J Biol Chem 280:34709–34717

    Article  PubMed  CAS  Google Scholar 

  40. Ahmed AJ, Millett F (1981) Use of specific lysine modifications to identify the site of reaction between cytochrome c and ferricyanide. J Biol Chem 256:1611–1615

    PubMed  CAS  Google Scholar 

  41. Eley CG, Moore GR, Williams G, Williams RJ (1982) 1H NMR studies of the electron exchange between cytochrome c and iron hexacyanides. Definition of the iron hexacyanide binding sites on cytochrome c. Eur J Biochem 124:295–303

    Article  PubMed  CAS  Google Scholar 

  42. Kluck RM, Ellerby LM, Ellerby HM, Naiem S, Yaffe MP, Margoliash E, Bredesen D, Mauk AG, Sherman F, Newmeyer DD (2000) Determinants of cytochrome c pro-apoptotic activity. The role of lysine 72 trimethylation. J Biol Chem 275:16127–16133

    Article  PubMed  CAS  Google Scholar 

  43. Chertkova RV, Sharonov GV, Feofanov AV, Bocharova OV, Latypov RF, Chernyak BV, Arseniev AS, Dolgikh DA, Kirpichnikov MP (2008) Proapoptotic activity of cytochrome c in living cells: effect of K72 substitutions and species differences. Mol Cell Biochem 314:85–93

    Article  PubMed  CAS  Google Scholar 

  44. Mufazalov IA, Pen’kov DN, Cherniak BV, OIu Pletiushkina, MIu Vysokikh, Kirpichnikov MP, Dolgikh DA, Kruglov AA, Kuprash DV, Skulachev VP, Nedospasov SA (2009) Preparation and characterization of mouse embryonic fibroblasts with K72W mutation in somatic cytochrome C gene. Mol Biol (Mosk) 43:648–656 (In Russian)

    Article  CAS  Google Scholar 

  45. Gorgoglione V, Laraspata D, La Piana G, Marzulli D, Lofrumento NE (2007) Protective effect of magnesium and potassium ions on the permeability of the external mitochondrial membrane. Arch Biochem Biophys 461:13–23

    Article  PubMed  CAS  Google Scholar 

  46. Lemeshko VV, Shekh VE (1993) Hypotonic fragility of outer membrane and activation of external pathway of NADH oxidation in rat liver mitochondria are increased with age. Mech Ageing Dev 68:221–233

    Article  PubMed  CAS  Google Scholar 

  47. Cain K, Langlais C, Sun XM, Brown DG, Cohen GM (2001) Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem 276:41985–41990

    Article  PubMed  CAS  Google Scholar 

  48. Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, Green DR (2001) Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 153:319–328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Colciencias (Colombia) Research Grant #111840820380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor V. Lemeshko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemeshko, V.V. Redox state-dependent aggregation of mitochondria induced by cytochrome c . Mol Cell Biochem 360, 111–119 (2012). https://doi.org/10.1007/s11010-011-1049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1049-1

Keywords

Navigation