Molecular and Cellular Biochemistry

, Volume 360, Issue 1–2, pp 23–33 | Cite as

5,6-Dihydro-2H-pyranones and 5,6-dihydro-2H-pyridones and their derivatives modulate in vitro human T lymphocyte function

  • Y. Baba Hamed
  • A. Medjdoub
  • B. Mostefa Kara
  • H. Merzouk
  • D. Villemin
  • M. Narce


The aim of this work was to study the in vitro effects of δ-lactone 1, δ-lactam 3 and their enaminone derivatives 2 and 4, synthesized in our laboratory, on the proliferative responses of human lymphocytes, Th1 and Th2 cytokine secretion and intracellular redox status. Peripheral blood lymphocytes were isolated using differential centrifugation on a density gradient of Histopaque. They were cultured with mitogen concanavalin A (Con A) and with different concentrations of the compounds 1, 2, 3 and 4 (0.1–10 μM). Proliferation (MTT assay), IL-2, INFγ and IL-4 (Elisa kits), oxidative markers (intracellular glutathione, hydroperoxide and carbonyl protein contents) and cytotoxic effect (micronucleus test) were determined. The compounds 1 and 2 are immunosuppressive and decrease IL-2, INFγ and IL-4 secretion with a shift away from Th2 response to Th1 phenotype. The compounds 3 and 4 were immunostimulant and increased cytokine secretion with a shift away from Th1 response to Th2. The introduction of an enamine group to 1 and 3 to provide 2 and 4 seemed to attenuate their immunological properties. These immunomodulatory properties were, however, accompanied by an increase in lymphocyte intracellular oxidative stress, especially with 1 and 2 at high concentrations. In conclusion, the compounds 1, 2, 3 and 4 could be used to provide cell-mediated immune responses for novel therapies in T-cell mediated immune disorders.


Cytokines δ-Lactams δ-Lactones Human lymphocytes In vitro proliferation Oxidative stress 



This work was supported by the French Foreign Office (International Research Extension Grant TASSILI 08MDU723) and by the Algerian Research Investigation Office (CNEPRU, PNR).

Conflict of interest



  1. 1.
    Leite L, Jansone D, Veveris M, Cirule H, Popelis Y, Melikyan G, Avetisyan A, Lukevics E (1999) Vasodilating and antiarrhythmic activity of heteryl lactones. Eur J Med Chem 34:859–865CrossRefGoogle Scholar
  2. 2.
    Veretennikova N, Skorova A, Jansone D, Lukevics E, Leite L, Melikyan G (2002) Synthesis and computer prediction of the pharmacological activity of aryl γ- and δ-lactams. Drug Future 27:457–461Google Scholar
  3. 3.
    Tanaka H, Kageyama K, Yoshimura N, Asada R, Kusumoto K, Miwa N (2007) Anti-tumor and anti-invasive effects of diverse delta-alkyllactones: dependence on molecular side-chain length, action period and intracellular uptake. Life Sciences 80:1851–1855PubMedCrossRefGoogle Scholar
  4. 4.
    Kim EJ, Lim SS, Young Park S, Shin YK, Kim JS, Yoon Park JH (2008) Apoptosis of DU145 human prostate cancer cells induced by dehydrocostus lactone isolated from the root of Saussurea lappa. Food Chem Toxicol 46:3651–3658PubMedCrossRefGoogle Scholar
  5. 5.
    Tanaka H, Kageyama K, Asada R, Yoshimura N, Miwa N (2008) Promotive effects of hyperthermia on the cytostatic activity to Ehrlich ascites tumor cells by diverse delta-alkyllactones. Exp Oncol 30:143–147PubMedGoogle Scholar
  6. 6.
    Yao T, Larock RC (2003) Synthesis of isocoumarins and a-pyrones via electrophilic cyclization. J Org Chem 68:5936–5942PubMedCrossRefGoogle Scholar
  7. 7.
    Goel A, Ram VJ (2009) Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron 65:7865–7913CrossRefGoogle Scholar
  8. 8.
    Muhsin M, Gricks C, Kirkpatrick P (2004) Pemetrexed disodium. Nature Rev Drug Discov 3:825–826CrossRefGoogle Scholar
  9. 9.
    Konaklieva MI, Plotkin BJ (2005) Lactones: generic inhibitors of enzymes? Mini-Rev Med Chem 5:73–95PubMedGoogle Scholar
  10. 10.
    Sirikantaramas S, Asano T, Sudo H, Yamazaki M, Saito K (2007) Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotechnol 8:196–202PubMedCrossRefGoogle Scholar
  11. 11.
    Bergh JCS, Tötterman TH, Termander BC, Strandgården KA, Gunnarsson POG, Nilsson BI (1997) The first clinical pilot study of roquinimex (Linomide) in cancer patients with special focus on immunological effects. Cancer Invest 15:204–211PubMedCrossRefGoogle Scholar
  12. 12.
    Calixto JB, Campos MM, Otuki MF, Santos ARS (2004) Anti-inflammatory compounds of plants origin. Modulation of proinflammatory cytokines, chemokines and adhesion molecules. Planta Med 70:93–103PubMedCrossRefGoogle Scholar
  13. 13.
    Koch E, Klaas CA, Rüngeler P, Castro V, Mora G, Vichnewski W, Merfort I (2001) Inhibition of inflammatory cytokine production and lymphocyte proliferation by structurally different sesquiterpene lactones correlates with their effect on activation of NF-κB. Biochem Pharmacol 62:795–801PubMedCrossRefGoogle Scholar
  14. 14.
    Cho JY, Baik KU, Jung JH, Park MH (2009) In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur J Pharmacol 398:399–407CrossRefGoogle Scholar
  15. 15.
    Delves P, Martin S, Burton D, Roitt I (2006) Roitt’s essential immunology, 11th edn. Wiley–Blackwell, Hoboken, NJGoogle Scholar
  16. 16.
    Mossman TT, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146CrossRefGoogle Scholar
  17. 17.
    Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL, Bloom BR (1991) Differing lymphokine profiles of functional subset of human CD4 and CD8 T cell clones. Science 254:279–282PubMedCrossRefGoogle Scholar
  18. 18.
    Hildeman DA, Mitchell T, Teague TK (1999) Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10:735–744PubMedCrossRefGoogle Scholar
  19. 19.
    Cope AP (2002) Studies of T-cell activation in chronic inflammation. Arthritis Res 4:197–211CrossRefGoogle Scholar
  20. 20.
    Shan X, Aw TY, Jones DP (1994) Glutathione-dependent protection against oxidative injury. Pharmacol Ther 47:61–71CrossRefGoogle Scholar
  21. 21.
    Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760PubMedCrossRefGoogle Scholar
  22. 22.
    Hadzic T, Li L, Cheng N, Walsh SA, Spitz DR, Knudson CM (2005) The role of low molecular weight thiols in T lymphocyte proliferation and IL-2 secretion. J Immunol 175:7965–7972PubMedGoogle Scholar
  23. 23.
    Leite L, Jansone D, Fleisher M, Kazhoka H, Popelis J, Veretennikova N, Shestakova I, Domracheva I, Lukevics E (2004) Synthesis and cytotoxic activity of 4-substituted 3-cyano-6, 6-dimethyl-5, 6-dihydro-2-pyranones. Chem Heterocycl Comp 40:715–724CrossRefGoogle Scholar
  24. 24.
    Avetisyan AA, Dangyan MT (1997) The chemistry of Δαβ-butenolides. Russ Chem Rev 46:643–649CrossRefGoogle Scholar
  25. 25.
    Baldwin JJ, Mensler K, Ponticello GS (1978) A novel naphthyridinone synthesis via enamine cyclization. J Org Chem 43:4878–4880CrossRefGoogle Scholar
  26. 26.
    Jansone D, Belyakov S, Fleisher M, Leite L, Lukevics E (2007) Molecular and crystal structure of 4, 6, 6-trimethyl-2-oxo-5, 6-dihydro-2H-pyran-3-carbonitrile and 4, 6, 6-trimethyl-2-oxo-1, 2, 5, 6 tetrahydropyridine-3-carbonitrile. Chem Heterocycl Comp 43:1374–1378CrossRefGoogle Scholar
  27. 27.
    Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  28. 28.
    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478PubMedCrossRefGoogle Scholar
  29. 29.
    Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutation Res 534:65–75PubMedGoogle Scholar
  30. 30.
    Ritchie AJ, Yam AO, Tanabe KM, Rice SA, Cooley MA (2003) Modification of in vivo and in vitro T- and B-cell-mediated immune responses by the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone. Infect Immun 71:4421–4431PubMedCrossRefGoogle Scholar
  31. 31.
    Roth J, De Souza GEP (2001) Fever induction pathways: evidence from responses to systemic or local cytokine formation. Braz J Med Biol Res 34:301–314PubMedCrossRefGoogle Scholar
  32. 32.
    Telford GD, Williams WP, Appleby TP, Sewell H, Stewart GS, Bycroft BW, Pritchard DI (1998) The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity. Infect Immun 66:36–42PubMedGoogle Scholar
  33. 33.
    Ritchie AJ, Jansson A, Stallberg J, Nilsson P, Lysaght P, Cooley MA (2005) The Pseudomonas aeruginosa quorum-sensing molecule N-3-(oxododecanoyl)-l-homoserine lactone inhibits T-cell differentiation and cytokine production by a mechanism involving an early step in T-cell activation. Infect Immun 73:1648–1655PubMedCrossRefGoogle Scholar
  34. 34.
    Cornish GH, Sinclair LV, Cantrell DA (2006) Differential regulation of T-cell growth by IL-2 and IL-15. Blood 108:600–608PubMedCrossRefGoogle Scholar
  35. 35.
    Mond JJ, Balapure A, Feuerstein N, June JH, Brunswick M, Lindsberg ML, Witherspoon K (1990) Protein kinase C activation in B cells by indolactam inhibits anti-Ig- mediated phosphatidylinositol bisphosphate hydrolysis but not B cell proliferation. J Immunol 144:451–455PubMedGoogle Scholar
  36. 36.
    Zanni MP, Greyerz SV, Schnyder B, Brander CK, Frutig K, Hari Y, Valitutti S, Pichler WJ (1998) HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human α β T lymphocytes. J Clin Invest 102:1591–1598PubMedCrossRefGoogle Scholar
  37. 37.
    Fidelus RK, Tsan MF (1986) Enhancement of intracellular glutathione promotes lymphocyte activation by mitogen. Cell Immunol 97:155–163PubMedCrossRefGoogle Scholar
  38. 38.
    Fico A, Paglialunga F, Cigliano L, Abrescia P, Verde P, Martini G, Iaccarino I, Filosa S (2004) Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell Death Differ 11:823–831PubMedCrossRefGoogle Scholar
  39. 39.
    Frossi B, De Carli M, Piemonte M, Pucillo C (2008) Oxidative microenvironment exerts an opposite regulatory effect on cytokine production by Th1 and Th2 cells. Mol Immunol 45:58–64PubMedCrossRefGoogle Scholar
  40. 40.
    Phillips BJ, James TEB, Andersen D (1984) Genetic damage in CHO cells exposed to enzymatically generated active oxygen species. Mut Res 126:265–271CrossRefGoogle Scholar
  41. 41.
    Bolognesi C (2003) Genotoxicity of pesticides: a review of human biomonitoring studies. Mut Res/Rev Mut Res 543:251–272Google Scholar
  42. 42.
    Calviello G, Piccioni E, Boninsegna A, Tedesco B, Maggiano N, Serini S, Wolf FI, Palloza P (2006) DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: involvement of the oxidative mechanism. Toxicol Appl Pharmacol 211:87–96PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Y. Baba Hamed
    • 1
  • A. Medjdoub
    • 2
  • B. Mostefa Kara
    • 1
  • H. Merzouk
    • 2
  • D. Villemin
    • 3
  • M. Narce
    • 4
  1. 1.Department of Chemistry, Laboratory of Catalysis and Synthesis in Organic Chemistry, Faculty of Sciences, BP119Abou-Bekr Belkaïd UniversityTlemcenAlgeria
  2. 2.Department of Biology, Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Faculty of Natural and Life Sciences, Earth and UniverseAbou-Bekr Belkaïd UniversityTlemcenAlgeria
  3. 3.ENSICAEN, LCMT-UMR 6507 CNRS, Université de CaenCaenFrance
  4. 4.Faculty of Life, Earth and Environment Sciences, INSERM UMR 866, Lipids Nutrition CancerUniversity of BurgundyDijonFrance

Personalised recommendations