Skip to main content
Log in

Estradiol-mediated suppression of CYP1B1 expression in mouse MA-10 Leydig cells is independent of protein kinase A and estrogen receptor

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Estrogens have multifaceted roles in mammalian testis. In the present study, we focused on estradiol as a potential regulator of testicular cytochrome P450 1B1 (CYP1B1) expression and investigated the possible mechanisms involved in the estradiol-mediated suppression. CYP1B1 protein levels were measured in the testes of rats that were treated with 17β-estradiol benzoate (1.5 mg/kg) at different stages of development. In addition, CYP1B1 mRNA levels were measured in mouse MA-10 Leydig tumor cells treated with (a) various concentrations of 17β-estradiol benzoate, (b) 17β-estradiol benzoate in the presence of exogenous luteinizing hormone (LH), or (c) 17β-estradiol benzoate in the presence of ICI 182,780, a competitive steroidal antagonist of estrogen receptors (ERs). Treatment of neonatal, pubertal, or adult rats with 17β-estradiol benzoate was associated with a reduction of approximately 90% in testicular CYP1B1 protein content compared to age-matched controls. Treatment of MA-10 cells with 17β-estradiol benzoate (10–500 nM) produced a concentration- and time-dependent decrease in CYP1B1 mRNA levels, but had no effect on LH receptor mRNA levels or on protein kinase A (PKA) activity. However, 17β-estradiol benzoate (10–500 nM), regardless of the concentration tested, failed to attenuate the LH-elicited increase in CYP1B1 mRNA or PKA activity in MA-10 cells that were co-treated with LH and estradiol. Similarly, ICI 182,780 (10–1000 µM) did not reverse the suppressive effect of estradiol on CYP1B1 mRNA expression in MA-10 cells co-treated with estradiol and ICI 182,780. The results indicate that downregulation of testicular CYP1B1 by estradiol was independent of PKA activity and was not mediated by ERs in MA-10 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CYP:

Cytochrome P450

LH:

Luteinizing hormone

PKA:

Protein kinase A

ER:

Estrogen receptor

AhR:

Aryl hydrocarbon receptor

RT-PCR:

Reverse transcription-polymerase chain reaction

References

  1. Shan LX, Phillips DM, Bardin CW, Hardy MP (1993) Differential regulation of steroidogenic enzymes during differentiation optimizes testosterone production by adult rat Leydig cells. Endocrinology 133:2277–2283

    Article  PubMed  CAS  Google Scholar 

  2. Leung GS, Kawai M, Tai JK, Chen J, Bandiera SM, Chang TK (2009) Developmental expression and endocrine regulation of CYP1B1 in rat testis. Drug Metab Dispos 37:523–528

    Article  PubMed  CAS  Google Scholar 

  3. Otto S, Bhattacharyya KK, Jefcoate CR (1992) Polycyclic aromatic hydrocarbon metabolism in rat adrenal, ovary, and testis microsomes is catalyzed by the same novel cytochrome P450 (P450RAP). Endocrinology 131:3067–3076

    Article  PubMed  CAS  Google Scholar 

  4. Archibong AE, Ramesh A, Niaz MS, Brooks CM, Roberson SI, Lunstra DD (2008) Effects of benzo[a]pyrene on intra-testicular function in F-344 rats. Int J Environ Res Public Health 5:32–40

    Article  PubMed  CAS  Google Scholar 

  5. Coutts SM, Fulton N, Anderson RA (2007) Environmental toxicant-induced germ cell apoptosis in the human fetal testis. Hum Reprod 22:2912–2918

    Article  PubMed  CAS  Google Scholar 

  6. Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR (1996) 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci USA 93:9776–9781

    Article  PubMed  CAS  Google Scholar 

  7. Liehr JG, Ricci MJ, Jefcoate CR, Hannigan EV, Hokanson JA, Zhu BT (1995) 4-Hydroxylation of estradiol by human uterine myometrium and myoma microsomes: implications for the mechanism of uterine tumorigenesis. Proc Natl Acad Sci USA 92:9220–9224

    Article  PubMed  CAS  Google Scholar 

  8. Murray GI, Taylor MC, McFadyen MC, McKay JA, Greenlee WF, Burke MD et al (1997) Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 57:3026–3031

    PubMed  CAS  Google Scholar 

  9. Sissung TM, Price DK, Sparreboom A, Figg WD (2006) Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Cancer Res 4:135–150

    Article  PubMed  CAS  Google Scholar 

  10. Holt SK, Rossing MA, Malone KE, Schwartz SM, Weiss NS, Chen C (2007) Ovarian cancer risk and polymorphisms involved in estrogen catabolism. Cancer Epidemiol Biomarkers Prev 16:481–489

    Article  PubMed  CAS  Google Scholar 

  11. Lepine J, Audet-Walsh E, Gregoire J, Tetu B, Plante M, Menard V et al (2010) Circulating estrogens in endometrial cancer cases and their relationship with tissular expression of key estrogen biosynthesis and metabolic pathways. J Clin Endocrinol Metab 95:2689–2698

    Article  PubMed  CAS  Google Scholar 

  12. Newbold RR, Liehr JG (2000) Induction of uterine adenocarcinoma in CD-1 mice by catechol estrogens. Cancer Res 60:235–237

    PubMed  CAS  Google Scholar 

  13. Sasaki M, Tanaka Y, Kaneuchi M, Sakuragi N, Dahiya R (2003) CYP1B1 gene polymorphisms have higher risk for endometrial cancer, and positive correlations with estrogen receptor alpha and estrogen receptor beta expressions. Cancer Res 63:3913–3918

    PubMed  CAS  Google Scholar 

  14. Ge RS, Dong Q, Sottas CM, Chen H, Zirkin BR, Hardy MP (2005) Gene expression in rat leydig cells during development from the progenitor to adult stage: a cluster analysis. Biol Reprod 72:1405–1415

    Article  PubMed  CAS  Google Scholar 

  15. Deb S, Bandiera SM (2011) Regulation of cytochrome P450 1B1 expression by luteinizing hormone in mouse MA-10 and rat R2C Leydig cells: role of protein kinase A. Biol Reprod 85:89–96

    Google Scholar 

  16. Putz O, Schwartz CB, LeBlanc GA, Cooper RL, Prins GS (2001) Neonatal low- and high-dose exposure to estradiol benzoate in the male rat. II. Effects on male puberty and the reproductive tract. Biol Reprod 65:1506–1517

    Article  PubMed  CAS  Google Scholar 

  17. Wong A, Bandiera SM (1996) Inductive effect of Telazol on hepatic expression of cytochrome P450 2B in rats. Biochem Pharmacol 52:735–742

    Article  PubMed  CAS  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  19. Ascoli M, Puett D (1978) Gonadotropin binding and stimulation of steroidogenesis in Leydig tumor cells. Proc Natl Acad Sci USA 75:99–102

    Article  PubMed  CAS  Google Scholar 

  20. Chen YC, Nagpal ML, Stocco DM, Lin T (2007) Effects of genistein, resveratrol, and quercetin on steroidogenesis and proliferation of MA-10 mouse Leydig tumor cells. J Endocrinol 192:527–537

    Article  PubMed  CAS  Google Scholar 

  21. Ree AH, Froysa A, Eskild W, Jahnsen T, Hansson V (1990) Biphasic regulation of the messenger ribonucleic acid coding for the estrogen receptor by cyclic adenosine 3′:5′-monophosphate in tumor Leydig cells. Cancer Res 50:1528–1531

    PubMed  CAS  Google Scholar 

  22. Rao RM, Jo Y, Babb-Tarbox M, Syapin PJ, Stocco DM (2002) Regulation of steroid hormone biosynthesis in R2C and MA-10 Leydig tumor cells: role of the cholesterol transfer proteins StAR and PBR. Endocr Res 28:387–394

    Article  PubMed  CAS  Google Scholar 

  23. Ickenstein LM, Bandiera SM (2002) Persistent suppression of hepatic CYP2A1 expression and serum triiodothyronine levels by tamoxifen in intact female rats: dose–response analysis and comparison with 4-hydroxytamoxifen, fulvestrant (ICI 182,780), and 17beta-estradiol-3-benzoate. J Pharmacol Exp Ther 302:584–593

    Article  PubMed  CAS  Google Scholar 

  24. Kawai M, Bandiera SM, Chang TK, Bellward GD (2000) Growth hormone regulation and developmental expression of rat hepatic CYP3A18, CYP3A9, and CYP3A2. Biochem Pharmacol 59:1277–1287

    Article  PubMed  CAS  Google Scholar 

  25. Shimada T, Inoue K, Suzuki Y, Kawai T, Azuma E, Nakajima T et al (2002) Arylhydrocarbon receptor-dependent induction of liver and lung cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in genetically engineered C57BL/6 J mice. Carcinogenesis 23:1199–1207

    Article  PubMed  CAS  Google Scholar 

  26. Zhang FP, Pakarainen T, Zhu F, Poutanen M, Huhtaniemi I (2004) Molecular characterization of postnatal development of testicular steroidogenesis in luteinizing hormone receptor knockout mice. Endocrinology 145:1453–1463

    Article  PubMed  CAS  Google Scholar 

  27. Fukuzawa NH, Ohsako S, Wu Q, Sakaue M, Fujii-Kuriyama Y, Baba T et al (2004) Testicular cytochrome P450scc and LHR as possible targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the mouse. Mol Cell Endocrinol 221:87–96

    Article  PubMed  CAS  Google Scholar 

  28. Abney TO (1999) The potential roles of estrogens in regulating Leydig cell development and function: a review. Steroids 64:610–617

    Article  PubMed  CAS  Google Scholar 

  29. Nozu K, Dufau ML, Catt KJ (1981) Estradiol receptor-mediated regulation of steroidogenesis in gonadotropin-desensitized Leydig cells. J Biol Chem 256:1915–1922

    PubMed  CAS  Google Scholar 

  30. Bilinska B, Kotula-Balak M, Gancarczyk M, Sadowska J, Tabarowski Z, Wojtusiak A (2003) Androgen aromatization in cryptorchid mouse testis. Acta Histochem 105:57–65

    Article  PubMed  CAS  Google Scholar 

  31. Nef S, Shipman T, Parada LF (2000) A molecular basis for estrogen-induced cryptorchidism. Dev Biol 224:354–361

    Article  PubMed  CAS  Google Scholar 

  32. Delbes G, Duquenne C, Szenker J, Taccoen J, Habert R, Levacher C (2007) Developmental changes in testicular sensitivity to estrogens throughout fetal and neonatal life. Toxicol Sci 99:234–243

    Article  PubMed  CAS  Google Scholar 

  33. Delbes G, Levacher C, Habert R (2006) Estrogen effects on fetal and neonatal testicular development. Reproduction 132:527–538

    Article  PubMed  CAS  Google Scholar 

  34. Goyal HO, Robateau A, Braden TD, Williams CS, Srivastava KK, Ali K (2003) Neonatal estrogen exposure of male rats alters reproductive functions at adulthood. Biol Reprod 68:2081–2091

    Article  PubMed  CAS  Google Scholar 

  35. Majdic G, Sharpe RM, O’Shaughnessy PJ, Saunders PT (1996) Expression of cytochrome P450 17alpha-hydroxylase/C17–20 lyase in the fetal rat testis is reduced by maternal exposure to exogenous estrogens. Endocrinology 137:1063–1070

    Article  PubMed  CAS  Google Scholar 

  36. Eddy EM, Washburn TF, Bunch DO, Goulding EH, Gladen BC, Lubahn DB et al (1996) Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology 137:4796–4805

    Article  PubMed  CAS  Google Scholar 

  37. Robertson KM, O’Donnell L, Jones ME, Meachem SJ, Boon WC, Fisher CR et al (1999) Impairment of spermatogenesis in mice lacking a functional aromatase (cyp 19) gene. Proc Natl Acad Sci USA 96:7986–7991

    Article  PubMed  CAS  Google Scholar 

  38. Fisher JS, Millar MR, Majdic G, Saunders PT, Fraser HM, Sharpe RM (1997) Immunolocalisation of oestrogen receptor-alpha within the testis and excurrent ducts of the rat and marmoset monkey from perinatal life to adulthood. J Endocrinol 153:485–495

    Article  PubMed  CAS  Google Scholar 

  39. van Pelt AM, de Rooij DG, van der Burg B, van der Saag PT, Gustafsson JA, Kuiper GG (1999) Ontogeny of estrogen receptor-beta expression in rat testis. Endocrinology 140:478–483

    Article  PubMed  Google Scholar 

  40. Warita K, Mitsuhashi T, Sugawara T, Tabuchi Y, Tanida T, Wang ZY et al (2010) Direct effects of diethylstilbestrol on the gene expression of the cholesterol side-chain cleavage enzyme (P450scc) in testicular Leydig cells. Life Sci 87:281–285

    Article  PubMed  CAS  Google Scholar 

  41. Sakaue M, Ishimura R, Kurosawa S, Fukuzawa NH, Kurohmaru M, Hayashi Y et al (2002) Administration of estradiol-3-benzoate down-regulates the expression of testicular steroidogenic enzyme genes for testosterone production in the adult rat. J Vet Med Sci 64:107–113

    Article  PubMed  CAS  Google Scholar 

  42. Steinberger E, Chowdhury M, Tcholakian R (1977) Effect of estradiol benzoate on the pituitary-gonadal axis in the intact male rat. Andrologia 9:307–312

    Article  PubMed  CAS  Google Scholar 

  43. Brinkmann AO, Leemborg FG, Roodnat EM, De Jong FH, Van der Molen HJ (1980) A specific action of estradiol on enzymes involved in testicular steroidogenesis. Biol Reprod 23:801–809

    Article  PubMed  CAS  Google Scholar 

  44. Kremers P, Tixhon C, Gielen J (1977) 17alpha-hydroxylase and testosterone biosynthesis in rat testes. J Steroid Biochem 8:873–877

    Article  PubMed  CAS  Google Scholar 

  45. Damber JE, Bergh A, Daehlin L, Ekholm C, Selstam G, Sodergard R (1983) The acute effect of oestrogens on testosterone production appears not to be mediated by testicular oestrogen receptors. Mol Cell Endocrinol 31:105–116

    Article  PubMed  CAS  Google Scholar 

  46. Reddy PM, Reddy PR (1990) Differential regulation of DNA methylation in rat testis and its regulation by gonadotropic hormones. J Steroid Biochem 35:173–178

    Article  PubMed  CAS  Google Scholar 

  47. Alworth LC, Howdeshell KL, Ruhlen RL, Day JK, Lubahn DB, Huang TH et al (2002) Uterine responsiveness to estradiol and DNA methylation are altered by fetal exposure to diethylstilbestrol and methoxychlor in CD-1 mice: effects of low versus high doses. Toxicol Appl Pharmacol 183:10–22

    Article  PubMed  CAS  Google Scholar 

  48. Missaghian E, Kempna P, Dick B, Hirsch A, Alikhani-Koupaei R, Jegou B et al (2009) Role of DNA methylation in the tissue-specific expression of the CYP17A1 gene for steroidogenesis in rodents. J Endocrinol 202:99–109

    Article  PubMed  CAS  Google Scholar 

  49. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526

    Article  PubMed  CAS  Google Scholar 

  50. Tokizane T, Shiina H, Igawa M, Enokida H, Urakami S, Kawakami T et al (2005) Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin Cancer Res 11:5793–5801

    Article  PubMed  CAS  Google Scholar 

  51. Spink DC, Katz BH, Hussain MM, Pentecost BT, Cao Z, Spink BC (2003) Estrogen regulates Ah responsiveness in MCF-7 breast cancer cells. Carcinogenesis 24:1941–1950

    Article  PubMed  CAS  Google Scholar 

  52. Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, Yokoi T (2004) Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res 64:3119–3125

    Article  PubMed  CAS  Google Scholar 

  53. Deb S, Kawai M, Chang TK, Bandiera SM (2010) CYP1B1 expression in rat testis and Leydig cells is not inducible by aryl hydrocarbon receptor agonists. Xenobiotica 40:447–457

    Article  PubMed  CAS  Google Scholar 

  54. Abdelrahim M, Ariazi E, Kim K, Khan S, Barhoumi R, Burghardt R et al (2006) 3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha. Cancer Res 66:2459–2467

    Article  PubMed  CAS  Google Scholar 

  55. Liu S, Abdelrahim M, Khan S, Ariazi E, Jordan VC, Safe S (2006) Aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha in MCF-7 breast cancer cells. Biol Chem 387:1209–1213

    Article  PubMed  CAS  Google Scholar 

  56. Yoshinaga K, Hawkins RA, Stocker JF (1969) Estrogen secretion by the rat ovary in vivo during the estrous cycle and pregnancy. Endocrinology 85:103–112

    Article  PubMed  CAS  Google Scholar 

  57. Dasmahapatra AK, Trewin AL, Hutz RJ (2002) Estrous cycle-regulated expression of CYP1B1 mRNA in the rat ovary. Comp Biochem Physiol B 133:127–134

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mario Ascoli (University of Iowa, Iowa City, IA) for providing mouse MA-10 Leydig tumor cells. Partial stipend support was provided to S.D. by a training grant from Merck Research Laboratories (Merck & Co., Inc., NJ). T.K.H.C. received a Senior Scholar Award from the Michael Smith Foundation for Health Research. Financial support was provided by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (RGPIN 138733-01 to S.M.B.) and by the Canadian Institutes of Health Research (Grant MOP-84581 to T.K.H.C.).

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelvio M. Bandiera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deb, S., Tai, J.K., Leung, G.S. et al. Estradiol-mediated suppression of CYP1B1 expression in mouse MA-10 Leydig cells is independent of protein kinase A and estrogen receptor. Mol Cell Biochem 358, 387–395 (2011). https://doi.org/10.1007/s11010-011-0994-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0994-z

Keywords

Navigation