Skip to main content

Advertisement

Log in

3,3′-Diindolylmethane inhibits breast cancer cell growth via miR-21-mediated Cdc25A degradation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

3,3′-Diindolylmethane (DIM) is a potential cancer preventive phytochemical derived from Brassica vegetables. The effects of DIM on cell-cycle regulation in both estrogen-dependent MCF-7 and estrogen receptor negative p53 mutant MDA-MB-468 human breast cancer cells were assessed in this study. DIM inhibited the breast cancer cell growth in vitro and in vivo, and caused cell-cycle arrest by down-regulating protein levels of cell-cycle related kinases CDK1, CDK2, CDK4, and CDK6, as well as Cyclin B1 and Cdc25A. Meanwhile, it was revealed that Ser124 phosphorylation of Cdc25A is primarily responsible for the DIM-induced Cdc25A degradation. Furthermore, treatment of MCF-7 cells with DIM increased miR-21 expression and down-regulated Cdc25A, resulting in an inhibition of breast cancer cell proliferation. These observations collectively suggest that by differentially modulating cellular signaling pathways DIM is able to arrest the cell-cycle progression of human breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Gandini S, Merzenich H, Robertson C, Boyle P (2000) Meta-analysis of studies on breast cancer risk and diet: the role of fruit and vegetable consumption and the intake of associated micronutrients. Eur J Cancer 36:636–646

    Article  PubMed  CAS  Google Scholar 

  3. Sun J, Liu RH (2008) Apple phytochemical extracts inhibit proliferation of estrogen-dependent and estrogen-independent human breast cancer cells through cell cycle modulation. J Agric Food Chem 56:11661–11667

    Article  PubMed  CAS  Google Scholar 

  4. Holst B, Williamson G (2004) A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep 21:425–447

    Article  PubMed  CAS  Google Scholar 

  5. Aggarwal BB, Ichikawa H (2005) Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4:1201–1215

    Article  PubMed  CAS  Google Scholar 

  6. Hong C, Firestone GL, Bjeldanes LF (2002) Bcl-2 family-mediated apoptotic effects of 3,3’-diindolylmethane (DIM) in human breast cancer cells. Biochem Pharmacol 63:1085–1097

    Article  PubMed  CAS  Google Scholar 

  7. Sarkar FH, Li Y (2004) Indole-3-carbinol and prostate cancer. J Nutr 134:3493S–3498S

    PubMed  CAS  Google Scholar 

  8. Bohlig L, Friedrich M, Engeland K (2011) p53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins. Nucleic Acids Res 39:440–453

    Article  PubMed  Google Scholar 

  9. Malhas A, Saunders NJ, Vaux DJ (2010) The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation. Cell Cycle 9:531–539

    Article  PubMed  CAS  Google Scholar 

  10. Saxena S, Jonsson ZO, Dutta A (2003) Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 278:44312–44319

    Article  PubMed  CAS  Google Scholar 

  11. Ambros V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673–676

    Article  PubMed  CAS  Google Scholar 

  12. Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7:464–473

    Article  PubMed  CAS  Google Scholar 

  13. Li Y, VandenBoom TG 2nd, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69:6704–6712

    Article  PubMed  CAS  Google Scholar 

  14. Melkamu T, Zhang X, Tan J, Zeng Y, Kassie F (2010) Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 31:252–258

    Article  PubMed  CAS  Google Scholar 

  15. Strickley RG (2004) Solubilizing excipients in oral and injectable formulations. Pharm Res 21:201–230

    Article  PubMed  CAS  Google Scholar 

  16. Hillman GG, Wang Y, Kucuk O, Che M, Doerge DR, Yudelev M, Joiner MC, Marples B, Forman JD, Sarkar FH (2004) Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic model. Mol Cancer Ther 3:1271–1279

    PubMed  CAS  Google Scholar 

  17. Rahman KM, Sarkar FH, Banerjee S, Wang Z, Liao DJ, Hong X, Sarkar NH (2006) Therapeutic intervention of experimental breast cancer bone metastasis by indole-3-carbinol in SCID-human mouse model. Mol Cancer Ther 5:2747–2756

    Article  PubMed  CAS  Google Scholar 

  18. Ahmad A, Kong D, Wang Z, Sarkar SH, Banerjee S, Sarkar FH (2009) Down-regulation of uPA and uPAR by 3,3’-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells. J Cell Biochem 108:916–925

    Article  PubMed  CAS  Google Scholar 

  19. Chang X, Tou JC, Hong C, Kim HA, Riby JE, Firestone GL, Bjeldanes LF (2005) 3,3’-Diindolylmethane inhibits angiogenesis and the growth of transplantable human breast carcinoma in athymic mice. Carcinogenesis 26:771–778

    Article  PubMed  CAS  Google Scholar 

  20. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J (2002) Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J 21:5911–5920

    Article  PubMed  CAS  Google Scholar 

  21. Melixetian M, Klein DK, Sorensen CS, Helin K (2009) NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 11:1247–1253

    Article  PubMed  CAS  Google Scholar 

  22. Li M, Yin S, Yuan J, Wei L, Ai JS, Hou Y, Chen DY, Sun QY (2008) Cdc25A promotes G2/M transition in oocytes. Cell Cycle 7:1301–1302

    Article  PubMed  CAS  Google Scholar 

  23. Boutros R, Dozier C, Ducommun B (2006) The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 18:185–191

    Article  PubMed  CAS  Google Scholar 

  24. Boutros R, Lobjois V, Ducommun B (2007) CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7:495–507

    Article  PubMed  CAS  Google Scholar 

  25. Wu Y, Feng X, Jin Y, Wu Z, Hankey W, Paisie C, Li L, Liu F, Barsky SH, Zhang W, Ganju R, Zou X (2010) A novel mechanism of indole-3-carbinol effects on breast carcinogenesis involves induction of Cdc25A degradation. Cancer Prev Res (Phila Pa) 3:818–828

    Article  CAS  Google Scholar 

  26. Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJ Jr, Lazo JS, Wang Z, Zhang L, Yu J (2009) microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 69:8157–8165

    Article  PubMed  CAS  Google Scholar 

  27. Okino ST, Pookot D, Basak S, Dahiya R (2009) Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer prevention. Cancer Prev Res (Phila) 2:251–256

    Article  CAS  Google Scholar 

  28. Xue L, Firestone GL, Bjeldanes LF (2005) DIM stimulates IFNgamma gene expression in human breast cancer cells via the specific activation of JNK and p38 pathways. Oncogene 24:2343–2353

    Article  PubMed  CAS  Google Scholar 

  29. Gong Y, Sohn H, Xue L, Firestone GL, Bjeldanes LF (2006) 3,3’-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells. Cancer Res 66:4880–4887

    Article  PubMed  CAS  Google Scholar 

  30. Degner SC, Papoutsis AJ, Selmin O, Romagnolo DF (2009) Targeting of aryl hydrocarbon receptor-mediated activation of cyclooxygenase-2 expression by the indole-3-carbinol metabolite 3,3’-diindolylmethane in breast cancer cells. J Nutr 139:26–32

    PubMed  CAS  Google Scholar 

  31. Chen I, McDougal A, Wang F, Safe S (1998) Aryl hydrocarbon receptor-mediated antiestrogenic and antitumorigenic activity of diindolylmethane. Carcinogenesis 19:1631–1639

    Article  PubMed  CAS  Google Scholar 

  32. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501

    Article  PubMed  CAS  Google Scholar 

  33. Charrier-Savournin FB, Chateau MT, Gire V, Sedivy J, Piette J, Dulic V (2004) p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell 15:3965–3976

    Article  PubMed  CAS  Google Scholar 

  34. Sadhu K, Reed SI, Richardson H, Russell P (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci USA 87:5139–5143

    Article  PubMed  CAS  Google Scholar 

  35. Cangi MG, Cukor B, Soung P, Signoretti S, Moreira G Jr, Ranashinge M, Cady B, Pagano M, Loda M (2000) Role of the Cdc25A phosphatase in human breast cancer. J Clin Invest 106:753–761

    Article  PubMed  CAS  Google Scholar 

  36. Evans KL (2000) Overexpression of CDC25A associated with poor prognosis in breast cancer. Mol Med Today 6:459

    Article  PubMed  Google Scholar 

  37. Goloudina A, Yamaguchi H, Chervyakova DB, Appella E, Fornace AJ Jr, Bulavin DV (2003) Regulation of human Cdc25A stability by Serine 75 phosphorylation is not sufficient to activate a S phase checkpoint. Cell Cycle 2:473–478

    Article  PubMed  CAS  Google Scholar 

  38. Jallepalli PV, Lengauer C, Vogelstein B, Bunz F (2003) The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J Biol Chem 278:20475–20479

    Article  PubMed  CAS  Google Scholar 

  39. Rossi L, Bonmassar E, Faraoni I (2007) Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 56:248–253

    Article  PubMed  CAS  Google Scholar 

  40. Pothof J, Verkaik NS, van IW, Wiemer EA, Ta VT, van der Horst GT, Jaspers NG, van Gent DC, Hoeijmakers JH, Persengiev SP (2009) MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 28:2090–2099

Download references

Acknowledgments

The author wishes to thank Carolyn Paisie (Ohio State University) for comments on this manuscript. This research was supported by 211 Special fund (105609101) from Ministry of Education of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucui Jin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Y. 3,3′-Diindolylmethane inhibits breast cancer cell growth via miR-21-mediated Cdc25A degradation. Mol Cell Biochem 358, 345–354 (2011). https://doi.org/10.1007/s11010-011-0985-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0985-0

Keywords

Navigation