Skip to main content
Log in

Activation of hypoxia-inducible factor-1 ameliorates postischemic renal injury via inducible nitric oxide synthase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hypoxia-inducible factor-1 (HIF-1) could ameliorate renal ischemia reperfusion injury (IRI), but the underlying mechanism remains elusive. In the current study, we aim to investigate the possible role of prolyl hydroxylases inhibitor dimethyloxalylglycine (DMOG) in inducing delayed preconditioning-like effects against IRI. Mice were divided into four groups (n = 6): sham group; IRI group; DMOG group: pretreated with DMOG 24 h before IRI; and GW274150 + DMOG group: pretreated with DMOG followed by iNOS inhibitor GW274150 treatment 24 h before IRI. The results showed that the protein level of HIF-1a and the expression of its targets inducible nitric oxide synthase (iNOS), erythropoietin, and heme oxygenase-1 were obviously increased after administration of DMOG. Histological analysis of renal function showed improvement in tubulointerstitial injury due to ischemia by delayed preconditioning with DMOG. GW274150 antagonized the delayed renal protection afforded by DMOG as reflected by deteriorated renal dysfunction, aggravated histological injury, increased renal cell apoptosis, and increased vimentin expression in the kidney. In conclusion, our data demonstrate that DMOG pretreatment induces delayed renal protection against IRI in mice and the beneficial effects are mitigated by pharmacological inhibition of iNOS, suggesting that the protective effects derived from HIF-1 activation via DMOG in the kidney are partially mediated by iNOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Basile DP, Donohoe D, Roethe K, Osborn JL (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281:F887–F899

    PubMed  CAS  Google Scholar 

  2. Reutzel-Selke A, Pratschke J, Martins PN, Denecke C, Jurisch A, Kotsch K, Pascher A, Neuhaus P, Tullius SG (2008) Ischemic preconditioning produces systemic protective and adoptively transferable effects. Kidney Int 74:622–630

    Article  PubMed  CAS  Google Scholar 

  3. Bonventre JV (2002) Kidney ischemic preconditioning. Curr Opin Nephrol Hypertens 11:43–48

    Article  PubMed  Google Scholar 

  4. Wang GL, Semenza GL (1993) General involvement of hypoxia inducible factor 1 in transcription response to hypoxia. Proc Natl Acad Sci USA 90:4304–4308

    Article  PubMed  CAS  Google Scholar 

  5. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIF targeted for VHL-mediated destruction by proline hydroxylation: implication for O2 sensing. Science 292:464–468

    Article  PubMed  CAS  Google Scholar 

  6. Jaakkola P, Mole DR, Tian Y, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim Av, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 94:468–472

    Article  Google Scholar 

  7. Bruick RM SLA (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  Google Scholar 

  8. Semenza GL (2000) Surviving ischemia: adaptive responses mediated by hypoxia inducible factor 1. J Clin Invest 106:809–812

    Article  PubMed  CAS  Google Scholar 

  9. Haase VH (2006) Hypoxia-inducible factors in the kidney. Am J Physiol Renal Physiol 291:F271–F281

    Article  PubMed  CAS  Google Scholar 

  10. Rosenberger C, Rosen S, Shina A, Frei U, Eckardt KU, Flippin LA, Arend M, Klaus SJ, Heyman SN (2008) Activation of hypoxia-inducible factors ameliorates hypoxic distal tubular injury in the isolated perfused rat kidney. Nephrol Dial Transplant 23:3472–3478

    Article  PubMed  CAS  Google Scholar 

  11. Ockaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, Fowler AA 3rd, Kukreja RC (2005) HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol 289:H542–H548

    Article  PubMed  CAS  Google Scholar 

  12. Harten SK, Ashcroft M, Maxwell PH (2010) Prolyl hydroxylase domain inhibitors: a route to HIF activation and neuroprotection. Antioxid Redox Signal 12:459–480

    Article  PubMed  CAS  Google Scholar 

  13. Jablonski P, Howden BO, Rae DA, Birrell CS, Marshall VC, Tange J (1983) An experimental model for assessment of renal recovery from warm ischemia. Transplantation 35:198–204

    Article  PubMed  CAS  Google Scholar 

  14. Witzgall R, Brown D, Schwarz C, Bonventre JV (1994) Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney: evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 93:2175–2188

    Article  PubMed  CAS  Google Scholar 

  15. Rosenberger C, Rosen S, Heyman SN (2006) Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury. Clin Exp Pharmacol Physiol 33:980–988

    Article  PubMed  CAS  Google Scholar 

  16. Joo JD, Kim M, D’Agati VD, Lee HT (2006) Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice. J Am Soc Nephrol 17:3115–3123

    Article  PubMed  CAS  Google Scholar 

  17. Yang CC, Lin LC, Wu MS, Chien CT, Lai MK (2009) Repetitive hypoxic preconditioning attenuates renal ischemia/reperfusion induced oxidative injury via upregulating HIF-1 alpha-dependent bcl-2 signaling. Transplantation 88:1251–1260

    Article  PubMed  CAS  Google Scholar 

  18. Hill P, Shukla D, Tran MG, Aragones J, Cook HT, Carmeliet P, Maxwell PH (2008) Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J Am Soc Nephrol 19:39–46

    Article  PubMed  CAS  Google Scholar 

  19. Natarajan R, Salloum FN, Fisher BJ, Ownby ED, Kukreja RC, Fowler AA 3rd (2007) Activation of hypoxia-inducible factor-1 via prolyl-4 hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium. Am J Physiol Heart Circ Physiol 293:H1571–H1580

    Article  PubMed  CAS  Google Scholar 

  20. Natarajan R, Salloum FN, Fisher BJ, Kukreja RC, Fowler AA 3rd (2006) Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res 98:133–140

    Article  PubMed  CAS  Google Scholar 

  21. Ockaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, Fowler AA 3rd, Kukreja RC (2005) HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol 289:H542–H548

    Article  PubMed  CAS  Google Scholar 

  22. Sasabe E, Tatemoto Y, Li D, Yamamoto T, Osaki T (2005) Mechanism of HIF-1alpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci 96:394–402

    Article  PubMed  CAS  Google Scholar 

  23. Liu XB, Wang JA, Ogle ME, Wei L (2009) Prolyl hydroxylase inhibitor dimethyloxalylglycine enhances mesenchymal stem cell survival. J Cell Biochem 106:903–911

    Article  PubMed  CAS  Google Scholar 

  24. Yang CW, Li C, Jung JY, Shin SJ, Choi BS, Lim SW, Sun BK, Kim YS, Kim J, Chang YS, Bang BK (2003) Preconditioning with erythropoietin protects against subsequent ischemia reperfusion injury in rat kidney. FASEB J 17:1754–1755

    Article  PubMed  CAS  Google Scholar 

  25. Wagner M, Cadetg P, Ruf R, Mazzucchelli L, Ferrari P, Redaelli CA (2003) Heme oxygenase-1 attenuates ischemia/reperfusion induced apoptosis and improves survival in rat renal allografts. Kidney Int 63:1564–1573

    Article  PubMed  CAS  Google Scholar 

  26. Cuzzocrea S, Chatterjee PK, Mazzon E, Dugo L, De Sarro A, Van de Loo FA, Caputi AP, Thiemermann C (2002) Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock 18:169–176

    Article  PubMed  Google Scholar 

  27. Alderton WK, Angell AD, Craig C, Dawson J, Garvey E, Moncada S, Monkhouse J, Rees D, Russell LJ, Russell RJ, Schwartz S, Waslidge N, Knowles RG (2005) GW274150 and GW273629 are potent and highly selective inhibitors of inducible nitric oxide synthase in vitro and in vivo. Br J Pharmacol 145:301–312

    Article  PubMed  CAS  Google Scholar 

  28. Sakamoto K, Yonoki Y, Kubota Y, Kuwagata M, Saito M, Nakahara T, Ishii K (2006) Inducible nitric oxide synthase inhibitors abolished histological protection by late ischemic preconditioning in rat retina. Exp Eye Res 82:512–518

    Article  PubMed  CAS  Google Scholar 

  29. Shinmura K, Xuan YT, Tang XL, Kuwagata M, Saito M, Nakahara T, Ishii K (2002) Inducible nitric oxide synthase modulates cyclooxygenase-2 activity in the heart of conscious rabbits during the late phase of ischemic preconditioning. Circ Res 90:602–608

    Article  PubMed  CAS  Google Scholar 

  30. Cho S, Park EM, Zhou P, Frys K, Ross ME, Iadecola C (2005) Obligatory role of inducible nitric oxide synthase in ischemic preconditioning. J Cereb Blood Flow Metab 25:493–501

    Article  PubMed  CAS  Google Scholar 

  31. Park KM, Byun JY, Kramers C, Kim JI, Huang PL, Bonventre JV (2003) Inducible nitric-oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney. J Biol Chem 278:27256–27266

    Article  PubMed  CAS  Google Scholar 

  32. Wakeno-Takahashi M, Otani H, Nakao S, Imamura H, Shingu K (2005) Isoflurane induces second window of preconditioning through up-regulation of inducible nitric oxide synthase in rat heart. Am J Physiol Heart Circ Physiol 289:H2585–H2591

    Article  PubMed  CAS  Google Scholar 

  33. Zhao T, Xi L, Chelliah J, Levasseur JE, Kukreja RC (2000) Inducible nitric oxide synthase mediates delayed myocardial protection induced by activation of adenosine A(1) receptors: evidence from gene-knockout mice. Circulation 102:902–907

    PubMed  CAS  Google Scholar 

  34. Xi L, Taher M, Yin C, Salloum F, Kukreja RC (2004) Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1α and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol 287:H2369–H2375

    Article  PubMed  CAS  Google Scholar 

  35. Yu L, Gengaro PE, Niederberger M, Burke TJ, Schrier RW (1994) Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci USA 91:1691–1695

    Article  PubMed  CAS  Google Scholar 

  36. Bertuglia S (2008) Intermittent hypoxia modulates nitric oxide-dependent vasodilation and capillary perfusion during ischemia-reperfusion-induced damage. Am J Physiol Heart Circ Physiol 294:H1914–H1922

    Article  PubMed  CAS  Google Scholar 

  37. Lopez-Neblina F, Paez AJ, Toledo-Pereyra LH (1995) Modulation of neutrophil infiltration through nitric oxide in the ischemic rat kidney. Transplant Proc 27:1883–1885

    PubMed  CAS  Google Scholar 

  38. Goligorsky MS, Brodsky SV, Noiri E (2002) Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int 61:855–861

    Article  PubMed  CAS  Google Scholar 

  39. Pannu R, Singh I (2006) Pharmacological strategies for the regulation of inducible nitric oxide synthase: neurodegenerative versus neuroprotective mechanisms. Neurochem Int 49:170–182

    Article  PubMed  CAS  Google Scholar 

  40. Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F, Addeo R, Makuuchi M, Esumi H (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95:189–197

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Project of Science and Technology Committee of Shanghai, China (No. 09410705800).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Bin Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XL., Yan, ZW., Sheng, WW. et al. Activation of hypoxia-inducible factor-1 ameliorates postischemic renal injury via inducible nitric oxide synthase. Mol Cell Biochem 358, 287–295 (2011). https://doi.org/10.1007/s11010-011-0979-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0979-y

Keywords

Navigation