Abstract
Protein kinase CK2 is emerging as a target in neoplastic diseases. Inhibition of CK2 by small compounds could lead to new therapies by counteracting the elevated CK2 activities found in a variety of tumors. Currently, CK2 inhibitors are primarily evaluated by a radiometric in vitro assay tracing the amount of transferred γ-32P from ATP to a substrate peptide. Here, we present two alternative assays abandoning radioisotopes. The first assay is based on Förster resonance energy transfer between the fluorescence donor EDANS and the acceptor molecule DABCYL within the CK2 substrate peptide [DABCYL]-RRRDDDSDDD-[EDANS]. This peptide comprises a cleavage site for pancreatic elastase, which is located next to the phosphate acceptor serine. Only the non-phosphorylated peptide can be cleaved by elastase, disrupting the FRET effect. Thus fluorescence intensity is inversely correlated with CK2 activity. The second non-radiometric assay deploys the changing of charge that occurs within the peptide substrate RRRDDDSDDD upon phosphorylation by CK2. Substrate and product of a CK2 reaction consequently show a difference in electrophoretic mobility and thus can be separated by capillary electrophoresis. Absorption detection enabled quantification of both peptide species and allowed the determination of IC50 values. This method facilitated the testing of a small compound library by which benzofuran derivatives were identified as potent CK2 inhibitors with IC50 values in the submicromolar range.
This is a preview of subscription content, access via your institution.




References
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70
Pagano MA, Cesaro L, Meggio F, Pinna LA (2006) Protein kinase CK2: a newcomer in the ‘druggable kinome’. Biochem Soc Trans 34(Pt 6):1303–1306. doi:10.1042/BST0341303
Cozza G, Bortolato A, Moro S (2010) How druggable is protein kinase CK2? Med Res Rev 30(3):419–462. doi:10.1002/med.20164
Sarno S, Pinna LA (2008) Protein kinase CK2 as a druggable target. Mol BioSyst 4(9):889–894. doi:10.1039/b805534c
Guerra B, Issinger O-G (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15(19):1870–1886
Daya-Makin M, Sanghera JS, Mogentale TL, Lipp M, Parchomchuk J, Hogg JC, Pelech SL (1994) Activation of a tumor-associated protein kinase (p40TAK) and casein kinase 2 in human squamous cell carcinomas and adenocarcinomas of the lung. Cancer Res 54(8):2262–2268
Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC (2001) Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20(25):3247–3257. doi:10.1038/sj.onc.1204411
Münstermann U, Fritz G, Seitz G, Lu YP, Schneider HR, Issinger OG (1990) Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. Eur J Biochem 189(2):251–257
Stalter G, Siemer S, Becht E, Ziegler M, Remberger K, Issinger O-G (1994) Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochem Biophys Res Commun 202(1):141–147. doi:10.1006/bbrc.1994.1904
Yenice S, Davis AT, Goueli SA, Akdas A, Limas C, Ahmed K (1994) Nuclear casein kinase 2 (CK-2) activity in human normal, benign hyperplastic, and cancerous prostate. Prostate 24(1):11–16
Laramas M, Pasquier D, Filhol O, Ringeisen F, Descotes J-L, Cochet C (2007) Nuclear localization of protein kinase CK2 catalytic subunit (CK2alpha) is associated with poor prognostic factors in human prostate cancer. Eur J Cancer 43(5):928–934. doi:10.1016/j.ejca.2006.11.021
Llobet D, Eritja N, Encinas M, Llecha N, Yeramian A, Pallares J, Sorolla A, Gonzalez-Tallada FJ, Matias-Guiu X, Dolcet X (2008) CK2 controls TRAIL and Fas sensitivity by regulating FLIP levels in endometrial carcinoma cells. Oncogene 27(18):2513–2524. doi:10.1038/sj.onc.1210924
Roig J, Krehan A, Colomer D, Pyerin W, Itarte E, Plana M (1999) Multiple forms of protein kinase CK2 present in leukemic cells: in vitro study of its origin by proteolysis. Mol Cell Biochem 191(1–2):229–234
Unger G, Davis AT, Slaton JW, Ahmed K (2004) Protein kinase CK2 as regulator of cell survival: implications for cancer therapy. Curr Cancer Drug Targets 4(1):77–84
Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K (2001) Protein kinase CK2 signal in neoplasia. Histol Histopathol 16(2):573–582
Trembley JH, Wang G, Unger G, Slaton J, Ahmed K (2009) Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 66(11–12):1858–1867. doi:10.1007/s00018-009-9154-y
Ruzzene M, Pinna LA (2010) Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim Biophys Acta 1804(3):499–504. doi:10.1016/j.bbapap.2009.07.018
Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368. doi:10.1096/fj.02-0473rev
Salvi M, Sarno S, Cesaro L, Nakamura H, Pinna LA (2009) Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta 1793(5):847–859. doi:10.1016/j.bbamcr.2009.01.013
Guerra B (2006) Protein kinase CK2 subunits are positive regulators of AKT kinase. Int J Oncol 28(3):685–693
Seldin DC, Landesman-Bollag E, Farago M, Currier N, Lou D, Dominguez I (2005) CK2 as a positive regulator of Wnt signalling and tumourigenesis. Mol Cell Biochem 274(1–2):63–67
Di Maira G, Brustolon F, Pinna LA, Ruzzene M (2009) Dephosphorylation and inactivation of Akt/PKB is counteracted by protein kinase CK2 in HEK 293T cells. Cell Mol Life Sci 66(20):3363–3373. doi:10.1007/s00018-009-0108-1
Dominguez I, Sonenshein GE, Seldin DC (2009) Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cell Mol Life Sci 66(11–12):1850–1857. doi:10.1007/s00018-009-9153-z
Allende-Vega N, Dias S, Milne D, Meek D (2005) Phosphorylation of the acidic domain of Mdm2 by protein kinase CK2. Mol Cell Biochem 274(1–2):85–90
Scaglioni PP, Yung TM, Choi SC, Baldini C, Konstantinidou G, Pandolfi PP (2008) CK2 mediates phosphorylation and ubiquitin-mediated degradation of the PML tumor suppressor. Mol Cell Biochem 316(1–2):149–154. doi:10.1007/s11010-008-9812-7
Druker BJ (2009) Perspectives on the development of imatinib and the future of cancer research. Nat Med 15(10):1149–1152. doi:10.1038/nm1009-1149
Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1(4):309–315
Eglen RM, Reisine T (2009) The current status of drug discovery against the human kinome. Assay Drug Dev Technol 7(1):22–43. doi:10.1089/adt.2008.164
Prudent R, Moucadel V, López-Ramos M, Aci S, Laudet B, Mouawad L, Barette C, Einhorn J, Einhorn C, Denis J-N, Bisson G, Schmidt F, Roy S, Lafanechere L, Florent J-C, Cochet C (2008) Expanding the chemical diversity of CK2 inhibitors. Mol Cell Biochem 316(1–2):71–85. doi:10.1007/s11010-008-9828-z
Laudet B, Moucadel V, Prudent R, Filhol O, Wong Y-S, Royer D, Cochet C (2008) Identification of chemical inhibitors of protein-kinase CK2 subunit interaction. Mol Cell Biochem 316(1–2):63–69. doi:10.1007/s11010-008-9821-6
Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O’Brien SE, Bliesath J, Omori M, Huser N, Ho C, Proffitt C, Schwaebe MK, Ryckman DM, Rice WG, Anderes K (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 70(24):10288–10298. doi:10.1158/0008-5472.CAN-10-1893
Pierre F, Chua PC, O’Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J, Schwaebe MK, Stefan E, Vialettes A, Whitten JP, Chen TK, Darjania L, Stansfield R, Anderes K, Bliesath J, Drygin D, Ho C, Omori M, Proffitt C, Streiner N, Trent K, Rice WG, Ryckman DM (2011) Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J Med Chem 54(2):635–654. doi:10.1021/jm101251q
Hastie CJ, McLauchlan HJ, Cohen P (2006) Assay of protein kinases using radiolabeled ATP: a protocol. Nat Protoc 1(2):968–971. doi:10.1038/nprot.2006.149
Jia Y, Quinn CM, Kwak S, Talanian RV (2008) Current in vitro kinase assay technologies: the quest for a universal format. Curr Drug Discov Technol 5(1):59–69
Hung M-S, Xu Z, Lin Y-C, Mao J-H, Yang C-T, Chang P-J, Jablons DM, You L (2009) Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library. BMC Cancer 9:135 9:135. doi:10.1186/1471-2407-9-135
Ferguson AD, Sheth PR, Basso AD, Paliwal S, Gray K, Fischmann TO, Le HV (2010) Structural basis of CX-4945 binding to human protein kinase CK2. FEBS Lett. doi:10.1016/j.febslet.2010.11.019
Kaessler A, Olgen S, Jose J (2011) Autodisplay of catalytically active human hyaluronidase hPH-20 and testing of enzyme inhibitors. Eur J Pharm Sci 42(1–2):138–147. doi:10.1016/j.ejps.2010.11.004
Jose J (2009) Bioanalytics in medicinal chemistry: from assay development to evolutive drug design. Ann Pharm Fr 67(6):399–407. doi:10.1016/j.pharma.2009.07.002
Jose J, Betscheider D, Zangen D (2005) Bacterial surface display library screening by target enzyme labeling: identification of new human cathepsin G inhibitors. Anal Biochem 346(2):258–267. doi:10.1016/j.ab.2005.08.019
Reichert W, Michel A, Hartmann RW, Jose J (2001) Stable expression of human 5alpha-reductase type II in COS1 cells due to chromosomal gene integration: a novel tool for inhibitor identification. J Steroid Biochem Mol Biol 78(3):275–284
Hartmann RW, Hector M, Haidar S, Ehmer PB, Reichert W, Jose J (2000) Synthesis and evaluation of novel steroidal oxime inhibitors of P450 17 (17 alpha-hydroxylase/C17–20-lyase) and 5 alpha-reductase types 1 and 2. J Med Chem 43(22):4266–4277
Ehmer PB, Jose J, Hartmann RW (2000) Development of a simple and rapid assay for the evaluation of inhibitors of human 17alpha-hydroxylase-C(17, 20)-lyase (P450cl7) by coexpression of P450cl7 with NADPH-cytochrome-P450-reductase in Escherichia coli. J Steroid Biochem Mol Biol 75(1):57–63
Rodems SM, Hamman BD, Lin C, Zhao J, Shah S, Heidary D, Makings L, Stack JH, Pollok BA (2002) A FRET-based assay platform for ultra-high density drug screening of protein kinases and phosphatases. Assay Drug Dev Technol 1(1 pt 1):9–19. doi:10.1089/154065802761001266
Merrifield RB (1963) Solid phase peptide synthesis I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154
Chang CD, Meienhofer J (1978) Solid-phase peptide synthesis using mild base cleavage of N alpha-fluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydrosomatostatin. Int J Pept Protein Res 11(3):246–249
Beythien J, White PD (2005) A solid phase linker strategy for the direct synthesis of EDANS-labelled peptide substrates. Tetrahedron Lett 46(1):101–104
Kucklaender U, Bollig R, Frank W, Gratz A, Jose J (2011) A novel application of DDQ as electrophile in the Nenitzescu reaction. Bioorg Med Chem 19(8):2666–2674. doi:10.1016/j.bmc.2011.03.006
Grankowski N, Boldyreff B, Issinger OG (1991) Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria. Eur J Biochem 198(1):25–30
Guerra B, Götz C, Wagner P, Montenarh M, Issinger OG (1997) The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene 14(22):2683–2688. doi:10.1038/sj.onc.1201112
Schneider CC, Hessenauer A, Götz C, Montenarh M (2009) DMAT, an inhibitor of protein kinase CK2 induces reactive oxygen species and DNA double strand breaks. Oncol Rep 21(6):1593–1597
Narayanan AS, Anwar RA (1969) The specificity of purified porcine pancreatic elastase. Biochem J 114(1):11–17
Naughton MA, Sanger F (1961) Purification and specificity of pancreatic elastase. Biochem J 78:156–163
Gratz A, Götz C, Jose J (2010) A FRET-based microplate assay for human protein kinase CK2, a target in neoplastic disease. J Enzyme Inhib Med Chem 25(2):234–239. doi:10.3109/14756360903170038
Gratz A, Götz C, Jose J (2010) A CE-based assay for human protein kinase CK2 activity measurement and inhibitor screening. Electrophoresis 31(4):634–640. doi:10.1002/elps.200900514
Kuenzel EA, Mulligan JA, Sommercorn J, Krebs EG (1987) Substrate specificity determinants for casein kinase II as deduced from studies with synthetic peptides. J Biol Chem 262(19):9136–9140
Sarno S, Reddy H, Meggio F, Ruzzene M, Davies SP, Donella-Deana A, Shugar D, Pinna LA (2001) Selectivity of 4, 5, 6, 7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (‘casein kinase-2’). FEBS Lett 496(1):44–48
Sarno S, Ruzzene M, Frascella P, Pagano MA, Meggio F, Zambon A, Mazzorana M, Di Maira G, Lucchini V, Pinna LA (2005) Development and exploitation of CK2 inhibitors. Mol Cell Biochem 274(1–2):69–76
Sarno S, Moro S, Meggio F, Zagotto G, Dal Ben D, Ghisellini P, Battistutta R, Zanotti G, Pinna LA (2002) Toward the rational design of protein kinase casein kinase-2 inhibitors. Pharmacol Ther 93(2–3):159–168
Sarno S, De Moliner E, Ruzzene M, Pagano MA, Battistutta R, Bain J, Fabbro D, Schoepfer J, Elliott M, Furet P, Meggio F, Zanotti G, Pinna LA (2003) Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1, 2-a)quinazolin-7-yl]acetic acid (IQA). Biochem J 374(Pt 3):639–646
Yim H, Lee YH, Lee CH, Lee SK (1999) Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase II as a competitive inhibitor. Planta Med 65(1):9–13. doi:10.1055/s-1999-13953
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gratz, A., Kuckländer, U., Bollig, R. et al. Identification of novel CK2 inhibitors with a benzofuran scaffold by novel non-radiometric in vitro assays. Mol Cell Biochem 356, 83–90 (2011). https://doi.org/10.1007/s11010-011-0957-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11010-011-0957-4
Keywords
- Protein kinase
- CK2 inhibition
- Assay
- Non-radiometric
- Benzofuran derivatives
- Capillary electrophoresis
- FRET