Skip to main content

Advertisement

Log in

Down-regulation of CK2 activity results in a decrease in the level of cdc25C phosphatase in different prostate cancer cell lines

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Protein kinase CK2 is implicated in the regulation of the cell cycle. In addition to a variety of functions, CK2 has anti-apoptotic properties. So far the role of CK2 linking both pathways in the cell is not clear. Some years ago we found that CK2 phosphorylates cdc25C, one member of the cdc25 family of proteins. In this study, we showed that inhibition of CK2 activity by three different inhibitors led to a down-regulation of the level of cdc25C. Inhibition of CK2 activity by transfecting the dominant-negative CK2α subunit also resulted in a down-regulation of the level of cdc25C whereas inhibition of CK2α′ had no effect on the cdc25C level. In both cases, we observed apoptosis by PARP cleavage as well as by an increase in γH2AX phosphorylation. These results show that down-regulation of the level of cdc25C is not a prerequisite for the induction of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  PubMed  CAS  Google Scholar 

  2. Nilsson I, Hoffmann I (2000) Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 4:107–114

    Article  PubMed  CAS  Google Scholar 

  3. Karlsson-Rosenthal C, Millar JB (2006) Cdc25: mechanisms of checkpoint inhibition and recovery. Trends Cell Biol 16:285–292

    Article  PubMed  CAS  Google Scholar 

  4. Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW (1991) cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67:197–211

    Article  PubMed  CAS  Google Scholar 

  5. Perdiguero E, Nebreda AR (2004) Regulation of Cdc25C activity during the meiotic G2/M transition. Cell Cycle 3:733–737

    Article  PubMed  CAS  Google Scholar 

  6. Ouyang B, Li W, Pan H, Meadows J, Hoffmann I, Dai W (1999) The physical association and phosphorylation of Cdc25C protein phosphatase by Prk. Oncogene 18:6029–6036

    Article  PubMed  CAS  Google Scholar 

  7. Schwindling SL, Noll A, Montenarh M, Götz C (2004) Mutation of a CK2 phosphorylation site in cdc25C impairs importin α/β binding and results in cytoplasmic retention. Oncogene 23:4155–4165

    Article  PubMed  CAS  Google Scholar 

  8. Litchfield DW, Lüscher B, Lozeman FJ, Eisenman RN, Krebs E (1992) Phosphorylation of CK II by p34cdc2 in vitro and at mitosis. J Biol Chem 267:13943–13951

    PubMed  CAS  Google Scholar 

  9. Mulner-Lorillon O, Cormier P, Labbe J-C, Doree M, Pouhle R, Osborne H, Belle R (1990) M-phase-specific cdc2 protein kinase phosphorylates the β subunit of casein kinase II and increases casein kinase II activity. Eur J Biochem 193:529–534

    Article  PubMed  CAS  Google Scholar 

  10. Bosc DG, Slominski E, Sichler C, Litchfield DW (1995) Phosphorylation of casein kinase II by p34cdc2—identification of phosphorylation sites using phosphorylation site mutants in vitro. J Biol Chem 270:25872–25878

    Article  PubMed  CAS  Google Scholar 

  11. Messenger MM, Saulnier RB, Gilchrist AD, Diamond P, Gorbsky GJ, Litchfield DW (2002) Interactions between protein kinase CK2 and Pin1—evidence for phosphorylation-dependent interactions. J Biol Chem 277:23054–23064

    Article  PubMed  CAS  Google Scholar 

  12. St-Denis NA, Derksen DR, Litchfield DW (2009) Evidence for regulation of mitotic progression through temporal phosphorylation and dephosphorylation of CK2α. Mol Cell Biol 29:2068–2081

    Article  PubMed  CAS  Google Scholar 

  13. Yu IJ, Spector DL, Bae Y-S, Marshak DR (1991) Immunocytochemical localization of casein kinase II during interphase and mitosis. J Cell Biol 114:1217–1232

    Article  PubMed  CAS  Google Scholar 

  14. Faust M, Günther J, Morgenstern E, Montenarh M, Götz C (2002) Specific localization of the catalytic subunits of protein kinase CK2 at the centrosomes. Cell Mol Life Sci 59:2155–2164

    Article  PubMed  CAS  Google Scholar 

  15. Theis-Febvre N, Filhol O, Froment C, Cazales M, Cochet C, Monsarrat B, Ducommun B, Baldin V (2003) Protein kinase CK2 regulates CDC25B phosphatase activity. Oncogene 22:220–232

    Article  PubMed  CAS  Google Scholar 

  16. Ford HL, Landesmann-Bollag E, Dacwag CS, Stukenberg PT, Pardee AB, Seldin DC (2000) Cell cycle-regulated phosphorylation of the human SIX1 homeodomain protein. J Biol Chem 275:22245–22254

    Article  PubMed  CAS  Google Scholar 

  17. Heriche JK, Lebrin F, Rabilloud T, LeRoy D, Chambaz EM, Goldberg Y (1997) Regulation of protein phosphatase 2A by direct interaction with casein kinase 2α. Science 276:952–955

    Article  PubMed  CAS  Google Scholar 

  18. Escargueil AE, Plisov SY, Filhol O, Cochet C, Larsen AK (2000) Mitotic phosphorylation of DNA topoisomerase II α by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469. J Biol Chem 275:34710–34718

    Article  PubMed  CAS  Google Scholar 

  19. Schneider CC, Hessenauer A, Montenarh M, Götz C (2010) p53 is dispensable for the induction of apoptosis after inhibition of protein kinase CK2. Prostate 70:126–134

    PubMed  CAS  Google Scholar 

  20. Hessenauer A, Schneider CC, Götz C, Montenarh M (2011) CK2 inhibition induces apoptosis via the ER stress response. Cell Signal 23:145–151

    Article  PubMed  CAS  Google Scholar 

  21. Hessenauer A, Montenarh M, Götz C (2003) Inhibition of CK2 activity provokes different responses in hormone-sensitive and hormone-refractory prostate cancer cells. Int J Oncol 22:1263–1270

    PubMed  CAS  Google Scholar 

  22. Sinisi AA, Chieffi P, Pasquali D, Kisslinger A, Staibano S, Bellastella A, Tramontano D (2002) EPN: a novel epithelial cell line derived from human prostate tissue. In Vitro Cell Dev Biol Anim 38:165–172

    Article  PubMed  CAS  Google Scholar 

  23. Hayward SW, Dahiya R, Cunha GR, Bartek J, Deshpande N, Narayan P (1995) Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1. In Vitro Cell Dev Biol 31:14–24

    Article  CAS  Google Scholar 

  24. Penner CG, Wang ZL, Litchfield DW (1997) Expression and localization of epitope-tagged protein kinase CK2. J Cell Biochem 64:525–537

    Article  PubMed  CAS  Google Scholar 

  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–682

    Article  PubMed  CAS  Google Scholar 

  26. Sarno S, Reddy H, Meggio F, Ruzzene M, Davies SP, Donella-Deana A, Shugar D, Pinna LA (2001) Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (‘casein kinase-2’). FEBS Lett 496:44–48

    Article  PubMed  CAS  Google Scholar 

  27. St-Denis NA, Litchfield DW (2009) From birth to death: The role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci 66:1817–1829

    Article  PubMed  CAS  Google Scholar 

  28. Faust M, Kartarius S, Schwindling SL, Montenarh M (2002) Cyclin H is a new binding partner for protein kinase CK2. Biochem Biophys Res Commun 269:6–12

    Google Scholar 

  29. Schneider E, Montenarh M, Wagner P (1998) Regulation of CAK kinase activity by p53. Oncogene 17:2733–2742

    Article  PubMed  CAS  Google Scholar 

  30. Schneider E, Kartarius S, Schuster N, Montenarh M (2002) The cyclin H/cdk7/Mat1 kinase activity is regulated by CK2 phosphorylation of cyclin H. Oncogene 21:5031–5037

    Article  PubMed  CAS  Google Scholar 

  31. Russo G, Vandenberg M, Yu IY, Bae Y-S, Franza BR, Marshak DR (1992) Casein kinase II phosporylated p34cdc2 kinase in G1 phase of the HeLa cell division cycle. J Biol Chem 267:20317–20325

    PubMed  CAS  Google Scholar 

  32. Li J, Meyer AN, Donoghue DJ (1997) Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation. Proc Natl Acad Sci USA 94:502–507

    Article  PubMed  CAS  Google Scholar 

  33. Sadhu K, Reed SI, Richardson H, Russell P (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci 87:5139–5143

    Article  PubMed  CAS  Google Scholar 

  34. Galaktionov K, Beach D (1991) Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67:1181–1194

    Article  PubMed  CAS  Google Scholar 

  35. Nagata A, Igarashi M, Jinno S, Suto K, Okayama H (1991) An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol 3:959–968

    PubMed  CAS  Google Scholar 

  36. Kreutzer J, Guerra B (2007) The regulatory beta-subunit of protein kinase CK2 accelerates the degradation of CDC25A phosphatase through the checkpoint kinase Chk1. Int J Oncol 31:1251–1259

    PubMed  CAS  Google Scholar 

  37. Pagano MA, Meggio F, Ruzzene M, Andrzejewska M, Kazimierczuk Z, Pinna LA (2004) 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole: a novel powerful and selective inhibitor of protein kinase CK2. Biochem Biophys Res Commun 321:1040–1044

    Article  PubMed  CAS  Google Scholar 

  38. Cozza G, Mazzorana M, Papinutto E, Bain J, Elliott M, Di MG, Gianoncelli A, Pagano MA, Sarno S, Ruzzene M, Battistutta R, Meggio F, Moro S, Zagotto G, Pinna LA (2009) Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2. Biochem J 421:387–395

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank D. Litchfield, Ontario, for the gift of the original vectors with the CK2 dominant-negative mutants. We also thank Nathaniel Saidu for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Montenarh.

Additional information

Carolin C. Schneider and Claudia Götz contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, C.C., Götz, C., Hessenauer, A. et al. Down-regulation of CK2 activity results in a decrease in the level of cdc25C phosphatase in different prostate cancer cell lines. Mol Cell Biochem 356, 177–184 (2011). https://doi.org/10.1007/s11010-011-0946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0946-7

Keywords

Navigation