Skip to main content
Log in

Angiotensin II downregulates catalase expression and activity in vascular adventitial fibroblasts through an AT1R/ERK1/2-dependent pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II) plays a profound regulatory effect on NADPH oxidase and the functional features of vascular adventitial fibroblasts, but its role in antioxidant enzyme defense remains unclear. This study investigated the effect of Ang II on expressions and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in adventitial fibroblasts and the possible mechanism involved. Ang II decreased the expression and activity of CAT in a dose- and time-dependent manner, but not that of SOD and GPx. The effects were abolished by the angiotensin II type 1 receptor (AT1R) blocker losartan and AT1R small-interfering RNA (siRNA). Incubation with polyethylene glycol-CAT prevented the Ang II-induced effects on reactive oxygen species (ROS) generation and myofibroblast differentiation. Moreover, Ang II rapidly induced phosphorylation of ERK1/2, which was reversed by losartan and AT1R siRNA. Pharmacological blockade of ERK1/2 improved Ang II-induced decrease in CAT protein expression. These in vitro results indicate that Ang II induces ERK1/2 activation, contributing to the downregulation of CAT as well as promoting oxidative stress and adventitial fibroblast phenotypic differentiation in an AT1R-mediated manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ang II:

Angiotensin II

AT1R:

Angiotensin II type 1 receptor

α-SMA:

α-Smooth muscle actin

CAT:

Catalase

ERK1/2:

Extracellular signal-regulated kinase 1/2

GPx:

Glutathione peroxidase

H2O2 :

Hydrogen peroxide

MAPKs:

Mitogen-activated protein kinases

PI3-kinase:

Phosphoinositide-3-kinase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  1. Touyz RM (2003) The role of angiotensin II in regulating vascular structural and functional changes in hypertension. Curr Hypertens Rep 5:155–164

    Article  PubMed  Google Scholar 

  2. Touyz RM (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 44:248–252. doi:10.1161/01.HYP.0000138070.47616.9d

    Article  PubMed  CAS  Google Scholar 

  3. Lassègue B, Griendling KK (2004) Reactive oxygen species in hypertension; An update. Am J Hypertens 17:852–860. doi:10.1016/j.amjhyper.2004.02.004

    Article  PubMed  Google Scholar 

  4. Shen WL, Gao PJ, Che ZQ, Ji KD, Yin M, Yan C, Berk BC, Zhu DL (2006) NADPH oxidase-derived reactive oxygen species regulate angiotensin II-induced adventitial fibroblast phenotypic differentiation. Biochem Biophys Res Commun 339:337–343. doi:10.1016/j.bbrc.2005.10.207

    Article  PubMed  CAS  Google Scholar 

  5. Brezniceanu ML, Liu F, Wei CC, Chénier I, Godin N, Zhang SL, Filep JG, Ingelfinger JR, Chan JS (2008) Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in renal proximal tubular cells. Diabetes 57:451–459. doi:10.2337/db07-0013

    Article  PubMed  CAS  Google Scholar 

  6. Godin N, Liu F, Lau GJ, Brezniceanu ML, Chénier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JS (2010) Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int 77:1086–1097. doi:10.1038/ki.2010.63

    Article  PubMed  CAS  Google Scholar 

  7. Choi SI, Kim TI, Kim KS, Kim BY, Ahn SY, Cho HJ, Lee HK, Cho HS, Kim ER (2009) Decreased catalase expression and increased susceptibility to oxidative stress in primary cultured corneal fibroblasts from patients with granular corneal dystrophy type II. Am J Pathol 175:248–261. doi:10.2353/ajpath.2009.081001

    Article  PubMed  CAS  Google Scholar 

  8. Okutan H, Ozcelik N, Yilmaz H, Uz E (2005) Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clin Biochem 38:191–196. doi:10.1016/j.clinbiochem.2004.10.003

    Article  PubMed  CAS  Google Scholar 

  9. Lijnen PJ, van Pelt JF, Fagard RH (2010) Downregulation of manganese superoxide dismutase by angiotensin II in cardiac fibroblasts of rats: association with oxidative stress in myocardium. Am J Hypertens 23:1128–1135. doi:10.1038/ajh.2010.128

    Article  PubMed  CAS  Google Scholar 

  10. Leung PS, Chan YC (2009) Role of oxidative stress in pancreatic inflammation. Antioxid Redox Signal 11:135–165. doi:10.1089/ars.2008.2109

    Article  PubMed  CAS  Google Scholar 

  11. Viedt C, Soto U, Krieger-Brauer HI, Fei J, Elsing C, Kübler W, Kreuzer J (2000) Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol 20:940–948

    Article  PubMed  CAS  Google Scholar 

  12. Beltrán AE, Briones AM, García-Redondo AB, Rodríguez C, Miguel M, Alvarez Y, Alonso MJ, Martínez-González J, Salaices M (2009) p38 MAPK contributes to angiotensin II-induced COX-2 expression in aortic fibroblasts from normotensive and hypertensive rats. J Hypertens 27:142–154. doi:10.1097/HJH.0b013e328317a730

    Article  PubMed  Google Scholar 

  13. Takeda K, Ichiki T, Tokunou T, Iino N, Takeshita A (2001) 15-Deoxy-∆12, 14-prostaglandin J2 and thiazolidinediones activate the MEK/ERK pathway through phosphatidylinositol 3-kinase in vascular smooth muscle cells. J Biol Chem 276:48950–48955. doi:10.1074/jbc.M108722200

    Article  PubMed  CAS  Google Scholar 

  14. Liu HW, Cheng B, Yu WL, Sun RX, Zeng D, Wang J, Liao YX, Fu XB (2006) Angiotensin II regulates phosphoinositide 3 kinase/Akt cascade via a negative crosstalk between AT1 and AT2 receptors in skin fibroblasts of human hypertrophic scars. Life Sci 79:475–483. doi:10.1016/j.lfs.2006.01.031

    Article  PubMed  CAS  Google Scholar 

  15. Zhu DL, Herembert T, Marche P (1991) Increased proliferation of adventitial fibroblasts from spontaneously hypertensive rat aorta. J Hypertens 9:1161–1168

    Article  PubMed  CAS  Google Scholar 

  16. Dobrian AD, Davies MJ, Schriver SD, Lauterio TJ, Prewitt RL (2001) Oxidative stress in a rat model of obesity-induced hypertension. Hypertension 37:554–560

    PubMed  CAS  Google Scholar 

  17. Baas AS, Berk BC (1995) Differential activation of mitogen-activated protein kinases by H2O2 and O2 in vascular smooth muscle cells. Circ Res 77:29–36

    PubMed  CAS  Google Scholar 

  18. Yang WW, Zhang J, Wang HY, Shen WL, Gao PJ, Singh M, Fang NY (2011) Peroxisome proliferator-activated receptor γ regulates angiotensin II-induced catalase downregulation in adventitial fibroblasts of rats. FEBS Lett 585:761–766. doi:10.1016/j.febslet.2011.01.040

    Article  PubMed  CAS  Google Scholar 

  19. Griendling KK, Sorescu D, Lassègue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183

    Article  PubMed  CAS  Google Scholar 

  20. Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923. doi:10.1172/JCI118623

    Article  PubMed  CAS  Google Scholar 

  21. Lijnen P, Papparella I, Petrov V, Semplicini A, Fagard R (2006) Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species. J Hypertens 24:757–766. doi:10.1097/01.hjh.0000217860.04994.54

    Article  PubMed  CAS  Google Scholar 

  22. Lijnen P, Petrov V, van Pelt J, Fagard R (2008) Inhibition of superoxide dismutase induces collagen production in cardiac fibroblasts. Am J Hypertens 21:1129–1136. doi:10.1038/ajh.2008.242

    Article  PubMed  CAS  Google Scholar 

  23. Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT (1997) Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad Sci USA 94:14483–14488

    Article  PubMed  CAS  Google Scholar 

  24. Haurani MJ, Pagano PJ (2007) Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: Bellwether for vascular disease? Cardiovasc Res 75:679–689. doi:10.1016/j.cardiores.2007.06.016

    Article  PubMed  CAS  Google Scholar 

  25. Dieterich S, Bieligk U, Beulich K, Hasenfuss G, Prestle J (2000) Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Circulation 101:33–39

    PubMed  CAS  Google Scholar 

  26. Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014. doi:10.1590/S0100-879X2005000700003

    Article  PubMed  CAS  Google Scholar 

  27. Wassmann S, Wassmann K, Nickenig G (2004) Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension 44:381–386. doi:10.1161/01.HYP.0000142232.29764.a7

    Article  PubMed  CAS  Google Scholar 

  28. Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y (2005) Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579:3029–3036. doi:10.1016/j.febslet.2005.04.058

    Article  PubMed  CAS  Google Scholar 

  29. Zhang J, Fang NY, Gao PJ, Wu LY, Han WQ, Guo SJ, Shen WL, Zhu DL (2008) Peroxisome proliferator-activated receptor-γ agonists attenuate angiotensin II-induced collagen type I expression in adventitial fibroblasts. Clin Exp Pharmacol Physiol 35:72–77. doi:10.1111/j.1440-1681.2007.04748.x

    Article  PubMed  Google Scholar 

  30. Sousa T, Pinho D, Morato M, Marques-Lopes J, Fernandes E, Afonso J, Oliveira S, Carvalho F, Albino-Teixeira A (2008) Role of superoxide and hydrogen peroxide in hypertension induced by an antagonist of adenosine receptors. Eur J Pharmacol 588:267–276. doi:10.1016/j.ejphar.2008.04.044

    Article  PubMed  CAS  Google Scholar 

  31. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  32. Chan YC, Leung PS (2009) Involvement of redox-sensitive extracellular-regulated kinases in angiotensin II-induced interleukin-6 expression in pancreatic acinar cells. J Pharmacol Exp Ther 329:450–458. doi:10.1124/jpet.108.148353

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Grants from Shanghai Municipal Health Bureau Youth Research Projects (No. 2010Y55) and the International Non-Governmental Cooperation Projects from the Shanghai Science and Technical Committee (No. 09410706900). The authors are grateful to Dr. Tianqing Peng, the University of Western Ontario, for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningyuan Fang.

Additional information

Weiwei Yang and Jia Zhang equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2011_915_MOESM1_ESM.tif

Supplementary Figures Effect of Ang II on activities and expressions of SOD and GPx in adventitial fibroblasts. Cells were stimulated with Ang II (10−7 M) for 0, 0.5, 2, 6, 12, 24, or 48 h, or with different concentrations (0, 10−8, 10−7, 10−6, 10−5 M) of Ang II for 24 h. The activities of SOD (S1 and S2) and GPx (S3 and S4) as well as protein and mRNA levels of Cu/Zn-SOD (S5, S6 and S7), Mn-SOD (S5, S8 and S9) and GPx (S5, S10 and S11) were analyzed by Western blotting and RT–PCR. Data are means±SD from three independent experiments

Supplementary material 2 (TIFF 12 kb)

Supplementary material 3 (TIFF 8 kb)

Supplementary material 4 (TIFF 8 kb)

Supplementary material 5 (TIFF 15 kb)

Supplementary material 6 (TIFF 9 kb)

Supplementary material 7 (TIFF 27 kb)

Supplementary material 8 (TIFF 9 kb)

Supplementary material 9 (TIFF 12 kb)

Supplementary material 10 (TIFF 12 kb)

Supplementary material 11 (TIFF 9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Zhang, J., Wang, H. et al. Angiotensin II downregulates catalase expression and activity in vascular adventitial fibroblasts through an AT1R/ERK1/2-dependent pathway. Mol Cell Biochem 358, 21–29 (2011). https://doi.org/10.1007/s11010-011-0915-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0915-1

Keywords

Navigation