Skip to main content
Log in

Molecular characterization and transcriptional analysis of the olive flounder (Paralichthys olivaceus) YGHL1 gene in response to hypoxia and infection

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The hypoxia-inducible gene 1, YGHL1 from olive flounder (Paralichthys olivaceus) (fYGHL1) was cloned, and its structural organization and expression profiles were determined. A 1,400 kb full-length cDNA encoding a predicted polypeptide of 91 amino acids was sequenced. The fYGHL1 gene comprises three introns, four exons, and several transcriptional elements upstream of the transcriptional start site. The mRNA transcript is expressed in almost all tissues, with high expression in the intestine and brain of normal-conditioned fish, and is expressed constitutively in early developmental stages after hatching. The mRNA expression of fYGHL1 is highly regulated by hypoxia and E. tarda infection. The expression of fYGHL1 mRNA was down regulated in the gill, spleen, intestine, and stomach of flounder under hypoxic conditions, whereas the expression level was increased in flounder embryonic cells treated with the hypoxia-mimic CoCl2 (a HIF-1 inducer). Pathogen challenge induced fYGHL1 expression in the spleen of juvenile fish. Taken together, these results suggest that fYGHL1 is a hypoxia-related gene with potential roles in the hypoxia response mechanism as well as in defense, immune responses, growth, and regulation of reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

BLAST:

Basic local alignment and search tool

GAPDH:

Glyceraldehyde phosphate dehydrogenase

SNPs:

Single nucleotide polymorphisms

HIF:

Hypoxia-inducible factor

References

  1. Diaz JR, Rosenberg R (1995) Marine benthic hypoxia: a review its ecological effects and the behavioural responses of benthic marcofauna. Oceanogra Mar Biol Annu Rev 33:245–303

    Google Scholar 

  2. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    PubMed  CAS  Google Scholar 

  3. Pihl L, Baden SP, Diaz RJ, Schaffener LC (1992) Hypoxia-induced structural changes in the diet of bottom-feeding fish and crustacea. Mar Biol 113:39–361

    Google Scholar 

  4. Peckol P, Rivers JS (1995) Physiological responses of the opportunistic macroalgae Cladophora vagabunda (L.) and Gracilaria tikvahiae (McLachlan) to environmental disturbances associated with eutrophications. J Exp Mar Biol Ecol 190:1–16

    Article  Google Scholar 

  5. Sandberg E (1997) Does oxygen deficiency modify the functional responses of Saduria entomon (Isopoda) to Bathyporeia pilosa (Amphipoda). Mar Biol 729:499–504

    Article  Google Scholar 

  6. Gesamp (1990) The State of the Marine Environment. UNEP Regional Sea reports and studies. No. 115. UNEP Blackwell Scientific Publications, Oxford

    Google Scholar 

  7. Goldberg ED (1995) Emerging problems in the coastal zone for the twenty-first century. Mar Pollut Bull 31:152–158

    Article  CAS  Google Scholar 

  8. Wu RSS (1999) Eutrophication, trace organics and water-borne pathogens: pressing problems and challenge. Mari Pollut Bull 39:11–22

    Article  CAS  Google Scholar 

  9. Baden SP, Loo LO, Pihl L, Rosenberg R (1990) Effects of eutrophication on benthic communities including fish: Swedish west coast. Ambio 19:113–122

    Google Scholar 

  10. Baden SP, Phil L, Rosenberg R (1990) Effects of oxygen depletion on the ecology, blood physiology and fishery of the Norway lobster Nephrops norvegicus. Mar Ecol Prog Ser 67:141–155

    Article  Google Scholar 

  11. Lu L, Wu RSS (2000) An experimental study on recolonization and succession of marine macrobenthos in defaunated sediment. Mar Biol 136:291–302

    Article  Google Scholar 

  12. Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45

    Article  PubMed  CAS  Google Scholar 

  13. Nikinmaa M, Rees BB (2005) Oxygen-dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol 288:1079–1090

    Article  Google Scholar 

  14. Randall DJ, McKenzie DJ, Abrami G, Bondiolotti GP, Nayiello F, Bronzi P, Bolis L, Agradi E (1992) Effects of diet on responses to hypoxia in sturgeon (Acipenser naccarii). J Exp Biol 170:113–125

    Google Scholar 

  15. Hochachka PW (1997) Oxygen-A key regulatory metabolite in metabolic defense against hypoxia. Am Zool 37:595–603

    CAS  Google Scholar 

  16. Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA 98:1993–1998

    Article  PubMed  CAS  Google Scholar 

  17. Ton C, Stamatiou D, Liew CC (2003) Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics 13:97–106

    PubMed  CAS  Google Scholar 

  18. Van der Meer DL, van den Thillart GE, Witter F, de Bakker MA, Besser J, Richardson MK, Spaink HP, Leito JK, Bagowski CP (2005) Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. Am J Physiol Regul Integr Comp Physiol 289:1512–1519

    Article  Google Scholar 

  19. Padilla PA, Roth MB (2001) Oxygen deprivation causes suspended animation in the zebrafish embryo. Pro Natl Acad Sci USA 98:7331–7335

    Article  CAS  Google Scholar 

  20. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  PubMed  CAS  Google Scholar 

  21. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  22. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 12:1244–1245

    Article  Google Scholar 

  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  24. Kasai H, Yoshimizu M (2001) Establishment of two Japanese flounder embryo cell lines. Bull Fish Sci Hokkaido Univ 52:67–70

    Google Scholar 

  25. Du F, Zhu L, Qian ZM, Wu XM, Yung WH, Xu WY, Ke Y (2008) Expression of bystin in reactive astrocytes induced by ischemia/reperfusion and chemical hypoxia in vitro. Biochem Biophys Acta 1782:658–663

    Google Scholar 

  26. Choi JH, Cho HK, Choi YH, Cheng JH (2009) Activating transcription factor 2 increases transactivation and protein stability of hypoxia-inducible factor 1α in hepatocytes. Biochem J 424:285–296

    Article  PubMed  CAS  Google Scholar 

  27. Nam BH, Byon JY, Kim YO, Park EM, Cho YC, Cheong J (2007) Molecular cloning and characterization of flounder (Paralichthys olivaceus) interleukin-6 gene. Fish Shellfish Immunol 23:231–236

    Article  PubMed  CAS  Google Scholar 

  28. Aoki T, Naka H, Katagiri T, Hirono I (2000) Cloning and characterization of glyceraldehydes-3-phosphate dehydrogenase cDNA of Japanese flounder Paralichthys olivaceus. Fish Sci 66:737–742

    Article  CAS  Google Scholar 

  29. Lee JH, Noh JK, Kim HC, Park CJ, Min BH, Kim YO, Kim JH, Kim KK, Kim WJ, Myeong JI (2009) EST-based identification of genes expressed in the brain of the olive flounder Paralichthys olivaceus. Fish Aqua Sci 18:286–292

    Google Scholar 

  30. Wang WR, Zhou YB, Liu F, Wang KS, Shen Y, Liu JH, Han ZG (2006) A novel recently evolved gene C19orf24 encodes a non-classical secreted protein. Cell Mol Biol Lett 11:161–170

    Article  PubMed  CAS  Google Scholar 

  31. Marchler-Bauer A, Anderson JB, Chistaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the conserved domain database. Nucleic Acids Res 37:205–210

    Article  Google Scholar 

  32. Yao YY, Barbara RD, Ghosh S, Fang Y, Leach RJ, Seto E (1998) Cloning, chromosomal localization and promoter analysis of the human transcription factor YY1. Nucleic Acids Res 26:3776–3783

    Article  PubMed  CAS  Google Scholar 

  33. Usheva A, Shenk T (1994) TATA-binding protein-independent initiation: YY1, TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA. Cell 76:1115–1121

    Article  PubMed  CAS  Google Scholar 

  34. Szalad A, Katakowski M, Zheng X, Jiang F, Chopp M (2009) Transcription factor Sp1 induces ADAM17 and contributes to tumor cell invasiveness under hypoxia. J Exp Clin Cancer Res 28:129–137

    Article  PubMed  Google Scholar 

  35. Ferreira TC, Hertzberg L, Gassmann M, Campos EG (2007) The yeast genome may harbor hypoxia response elements (HRE). Comp Biochem Physiol C Toxicol Pharmacol 146:255–263

    Article  PubMed  Google Scholar 

  36. Chen SL, Xu MY, Hu SN, Li L (2004) Analysis of immune-relevent genes expressed in red sea bream (Chrysophrys major) spleen. Aquaculture 240:115–130

    Article  CAS  Google Scholar 

  37. Nizet V, Johnson RS (2009) Interdependence of hypoxia and innate immune responses. Nat Rev Immunol 9:609–617

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Fisheries Research and development Institute (NFRDI), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Ok Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YO., Park, EM., Moon, J.Y. et al. Molecular characterization and transcriptional analysis of the olive flounder (Paralichthys olivaceus) YGHL1 gene in response to hypoxia and infection. Mol Cell Biochem 357, 305–312 (2011). https://doi.org/10.1007/s11010-011-0901-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0901-7

Keywords

Navigation