Skip to main content

Advertisement

Log in

Novel screening cascade identifies MKK4 as key kinase regulating Tau phosphorylation at Ser422

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Phosphorylation of Tau at serine 422 promotes Tau aggregation. The kinase that is responsible for this key phosphorylation event has so far not been identified but could be a potential drug target for Alzheimer’s disease. We describe here an assay strategy to identify this kinase. Using a combination of screening a library of 65’000 kinase inhibitors and in vitro inhibitor target profiling of the screening hits using the Ambit kinase platform, MKK4 was identified as playing a key role in Tau-S422 phosphorylation in human neuroblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, Palop JJ, Noebels JL, Mucke L (2011) Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci 31(2):700–711

    Article  PubMed  CAS  Google Scholar 

  2. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science (New York) 316 (5825):750–754

    Google Scholar 

  3. Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, Cui B, Mucke L (2010) Tau reduction prevents Abeta-induced defects in axonal transport. Science (New York) 330(6001):198

    Article  CAS  Google Scholar 

  4. Bondareff W, Mountjoy CQ, Roth M, Hauser DL (1989) Neurofibrillary degeneration and neuronal loss in Alzheimer’s disease. Neurobiol Aging 10(6):709–715

    Article  PubMed  CAS  Google Scholar 

  5. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16(3):271–278 discussion 278–284

    Article  PubMed  CAS  Google Scholar 

  6. Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41(1):17–24

    Article  PubMed  CAS  Google Scholar 

  7. Congdon EE, Duff KE (2008) Is tau aggregation toxic or protective? J Alzheimers Dis 14(4):453–457

    PubMed  Google Scholar 

  8. Hasegawa M, Morishima-Kawashima M, Takio K, Suzuki M, Titani K, Ihara Y, Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, Ihara Y (1992) Protein sequence and mass spectrometric analyses of tau in the Alzheimer’s disease brain Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem 267(24):17047–17054

    PubMed  CAS  Google Scholar 

  9. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, Ihara Y (1995) Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem 270(2):823–829

    Article  PubMed  CAS  Google Scholar 

  10. Vega IE, Cui L, Propst JA, Hutton ML, Lee G, Yen SH (2005) Increase in tau tyrosine phosphorylation correlates with the formation of tau aggregates. Brain Res Mol Brain Res 138(2):135–144

    Article  PubMed  CAS  Google Scholar 

  11. Hanger DP, Betts JC, Loviny TL, Blackstock WP, Anderton BH, Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH (1998) New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Neurochem 71(6):2465–2476

    Article  PubMed  CAS  Google Scholar 

  12. Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH (2007) Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. The Journal of biological chemistry 282(32):23645–23654

    Article  PubMed  CAS  Google Scholar 

  13. Deters N, Ittner LM, Gotz J (2008) Divergent phosphorylation pattern of tau in P301L tau transgenic mice. Eur J Neurosci 28(1):137–147

    Article  PubMed  Google Scholar 

  14. Haase C, Stieler JT, Arendt T, Holzer M (2004) Pseudophosphorylation of tau protein alters its ability for self-aggregation. J Neurochem 88(6):1509–1520

    Article  PubMed  CAS  Google Scholar 

  15. Pennanen L, Gotz J (2005) Different tau epitopes define Abeta42-mediated tau insolubility. Biochem Biophys Res Commun 337(4):1097–1101

    Article  PubMed  CAS  Google Scholar 

  16. Bhat RV, Budd Haeberlein SL, Avila J (2004) Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 89(6):1313–1317

    Article  PubMed  CAS  Google Scholar 

  17. Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40(3):471–483

    Article  PubMed  CAS  Google Scholar 

  18. Drewes G, Trinczek B, Illenberger S, Biernat J, Schmitt-Ulms G, Meyer HE, Mandelkow EM, Mandelkow E (1995) Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. The Journal of biological chemistry 270(13):7679–7688

    Article  PubMed  CAS  Google Scholar 

  19. Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, Gaynor K, LaFrancois J, Wang L, Kondo T, Davies P, Burns M, Veeranna Nixon R, Dickson D, Matsuoka Y, Ahlijanian M, Lau LF, Duff K (2003) Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38(4):555–565

    Article  PubMed  CAS  Google Scholar 

  20. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934

    Article  PubMed  CAS  Google Scholar 

  21. Grueninger F, Bohrmann B, Czech C, Ballard TM, Frey JR, Weidensteiner C, von Kienlin M, Ozmen L (2009) Phosphorylation of Tau at S422 is enhanced by Abeta in TauPS2APP triple transgenic mice. Neurobiol Dis 37(2):294–306

    Article  PubMed  Google Scholar 

  22. Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A, Cohen P (1997) Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett 409(1):57–62

    Article  PubMed  CAS  Google Scholar 

  23. Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 87(15):5827–5831

    Article  PubMed  CAS  Google Scholar 

  24. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103(1):26–35

    Article  PubMed  CAS  Google Scholar 

  25. Bussiere T, Hof PR, Mailliot C, Brown CD, Caillet-Boudin ML, Perl DP, Buee L, Delacourte A (1999) Phosphorylated serine422 on tau proteins is a pathological epitope found in several diseases with neurofibrillary degeneration. Acta Neuropathol 97(3):221–230

    Article  PubMed  CAS  Google Scholar 

  26. Qian W, Shi J, Yin X, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F (2010) PP2A Regulates Tau Phosphorylation Directly and also Indirectly via Activating GSK-3beta. J Alzheimers Dis 19(4):1221–1229

    Google Scholar 

  27. Churcher I (2006) Tau therapeutic strategies for the treatment of Alzheimer’s disease. Curr Top Med Chem 6(6):579–595

    Article  PubMed  CAS  Google Scholar 

  28. Savage MJ, Gingrich DE (2009) Advances in the Development of Kinase Inhibitor Therapeutics for Alzheimer’s Disease. Drug Development Research 70:125–144

    Article  CAS  Google Scholar 

  29. Schirmer A, Kennedy J, Murli S, Reid R, Santi DV (2006) Targeted covalent inactivation of protein kinases by resorcylic acid lactone polyketides. Proc Natl Acad Sci USA 103(11):4234–4239

    Article  PubMed  CAS  Google Scholar 

  30. Derijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ, Davis RJ (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267(5198):682–685

    Article  PubMed  CAS  Google Scholar 

  31. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). The Journal of biological chemistry 271(30):17920–17926

    Article  PubMed  CAS  Google Scholar 

  32. Lin A, Minden A, Martinetto H, Claret FX, Lange-Carter C, Mercurio F, Johnson GL, Karin M (1995) Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268(5208):286–290

    Article  PubMed  CAS  Google Scholar 

  33. Yoshida H, Hastie CJ, McLauchlan H, Cohen P, Goedert M (2004) Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK). J Neurochem 90(2):352–358

    Article  PubMed  CAS  Google Scholar 

  34. Woods YL, Cohen P, Becker W, Jakes R, Goedert M, Wang X, Proud CG (2001) The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem J 355(Pt 3):609–615

    PubMed  CAS  Google Scholar 

  35. Kimura R, Kamino K, Yamamoto M, Nuripa A, Kida T, Kazui H, Hashimoto R, Tanaka T, Kudo T, Yamagata H, Tabara Y, Miki T, Akatsu H, Kosaka K, Funakoshi E, Nishitomi K, Sakaguchi G, Kato A, Hattori H, Uema T, Takeda M (2007) The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum Mol Genet 16(1):15–23

    Article  PubMed  CAS  Google Scholar 

  36. Ryoo SR, Jeong HK, Radnaabazar C, Yoo JJ, Cho HJ, Lee HW, Kim IS, Cheon YH, Ahn YS, Chung SH, Song WJ (2007) DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. The Journal of biological chemistry 282(48):34850–34857

    CAS  Google Scholar 

  37. Huang Y, Deng T, Winston BW (2000) Characterization of hPRP4 kinase activation: potential role in signaling. Biochem Biophys Res Commun 271(2):456–463

    Article  PubMed  CAS  Google Scholar 

  38. Voets E, Wolthuis RM (2010) MASTL is the human orthologue of Greatwall kinase that facilitates mitotic entry, anaphase and cytokinesis. Cell cycle (Georgetown, TX) 9(17):3591–3601

    Article  CAS  Google Scholar 

  39. Burgess A, Vigneron S, Brioudes E, Labbe JC, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci USA 107(28):12564–12569

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alexandra Kronenberger, Annie Girardeau, Markus Haenggi and Fabienne Goepfert and Jürg Messer for excellent technical assistance and Sannah Jensen-Zoffmann for the images of LAN-5 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Grueninger.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grueninger, F., Bohrmann, B., Christensen, K. et al. Novel screening cascade identifies MKK4 as key kinase regulating Tau phosphorylation at Ser422. Mol Cell Biochem 357, 199–207 (2011). https://doi.org/10.1007/s11010-011-0890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0890-6

Keywords

Navigation